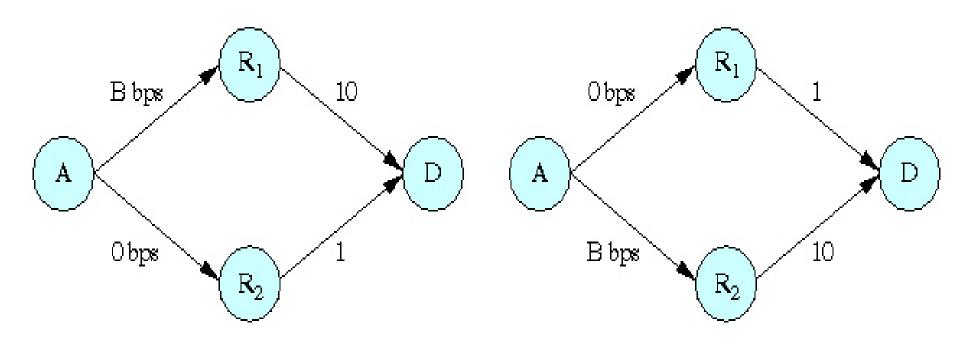
Communication Networks: Technology & Protocols

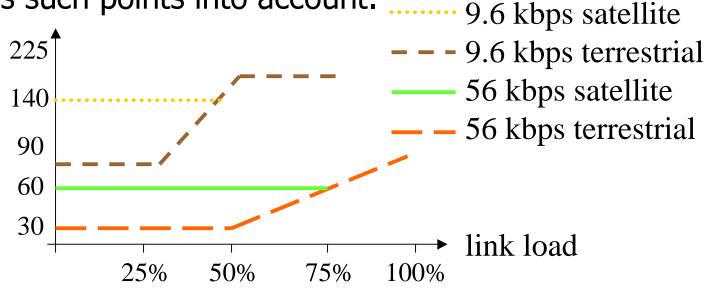
Stavros Tripakis (stavros@eecs)


Lecture 12 September 19

Routing metrics

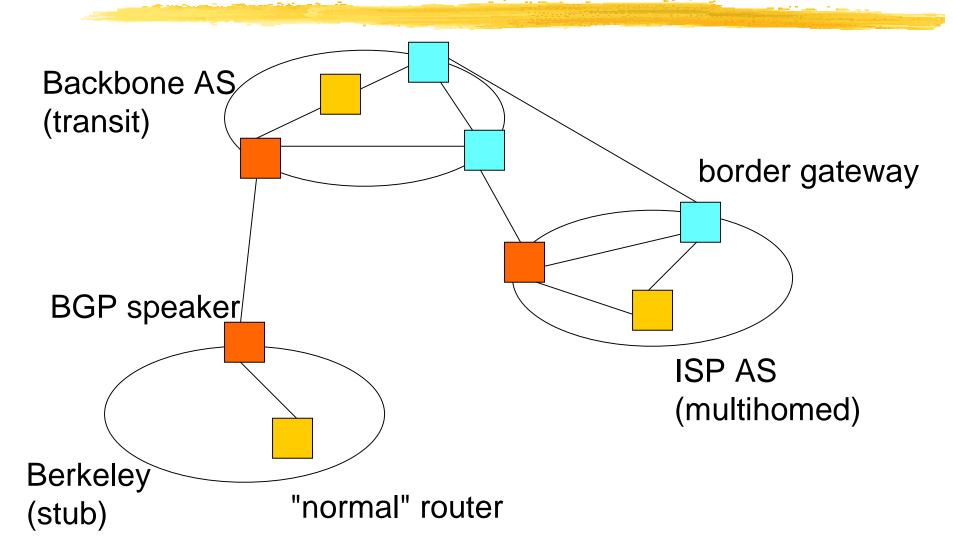
- How are link weights determined ?
 - Simple: weight 1 to all links (cost of path = hop count).
 - Link latency (queuing + propagation delays).
 - Link capacity (bit-rate).
 - Link reliability (packet-loss probability).
- Routing protocols might use multiple metrics and compute multiple routing tables for different traffic requirements (OSPF does this).
- Problem: link state changes dynamically.

Routing metrics: example of routing oscillations


- Routing affects link load.
- Link load affects link weight (latency, available capacity, etc).

Routing metrics

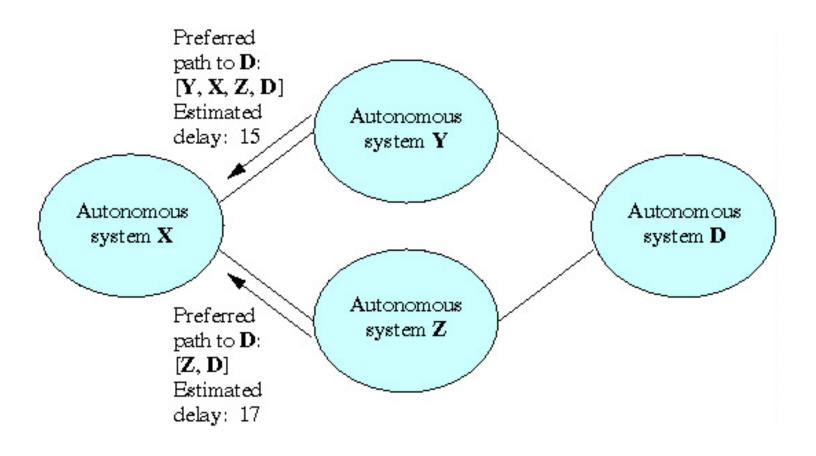
- To avoid such oscillations:
 - "Normalize" different routing metrics.
 - I Take into account link type (e.g., satellite, terrestrial).
 - Smoothen the variation of metric in time.
- (After many experiments) "Revised ARPANET routing metric" takes such points into account.


link weight

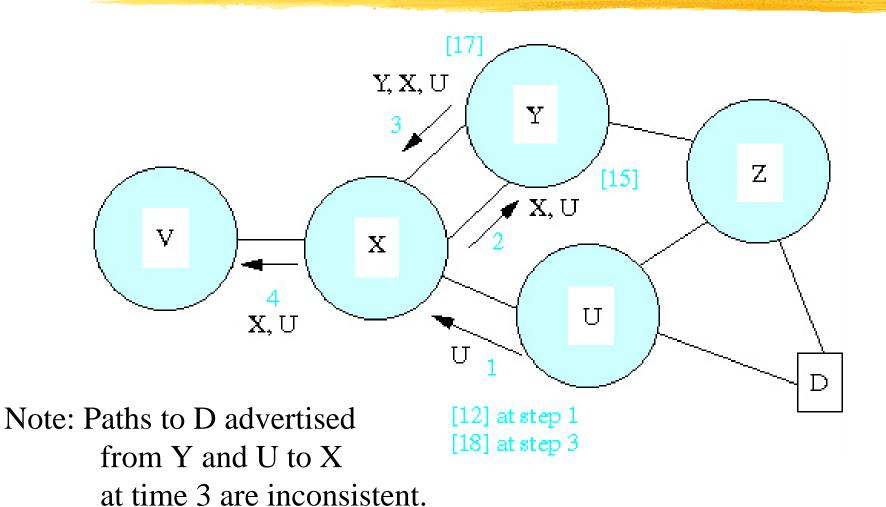
Interdomain routing

- At the IP (network) level.
- Network: set of AS connected by **border gateways** (routers connecting one AS to another).
- AS classification:
 - stub AS: single connection to another AS, local traffic;
 - multihomed AS: multiple connections, local traffic;
 - *transit* AS: multiple connections, transit traffic.
- One border gateway from each AS is the BGP speaker.

Interdomain routing


Interdomain routing: BGP

- BGP (border gateway protocol) is executed among BGP speakers.
- BGP speakers then distribute routing information to other border gateways inside their AS.
- Why not execute OSPF instead of BGP ?
 - Too many ASs (50,000): flooding becomes too expensive.
 - Administrative reasons: security, economics (cf. stub vs. transit ASs).
 - Metrics not always consistent among ASs.


Interdomain routing: BGP

- BGP speakers advertise preferred paths (routes).
- BGP is <u>distributed</u>: each speaker has its own view of the network (might be inconsistent w.r.t. the view of other speakers).
- To avoid loops, advertise **complete** paths, e.g., AS X says: "My preferred path to AS Z is (X, Y, W, Z)".
- When Y hears this, it knows it shouldn't go through X to get to Z.

BGP: example

BGP: another example

IP (Internet Protocol)

- Network-layer protocol: <u>unreliable</u> **end-to-end** delivery of packets (**datagrams**) of up to 64 kbytes.
- End-to-end: source and destination might not be directly connected, routing involved.
- Unreliable: packets might be lost (corrupted at the physical level or dropped because of full buffers) or not be delivered successfully (destination unreachable, loops). **ICMP** informs the source in the latter case.

IP header format

				31
IHL	Service type	Total length		
Identification		Flag	Fragment offset	
o live	Protocol	Header checksum		
Source network address				
Destination network address				
Options				Padding
	Identifi	Identification o live Protocol Source network Destination ne	Identification Flag o live Protocol Source network ad Destination network	Identification Flag Frag: o live Protocol Header of Source network address Destination network address

IP fragmentation/reassembly

- Different link layers have different **Maximum Transfer Units** (MTUs): maximum size of packet they can transmit.
- When *Size(datagram) > MTU* the datagram needs to be split in many pieces: **fragmentation**.
- The pieces are joined together to form the original datagram at the destination: **reassembly**.
- A datagram may be fragmented multiple times along its route to the destination.

IP fragmentation/reassembly

- ID# used to identify the datagram: all fragments of the same datagram have same ID#.
- Offset used to mark the "starting position" of the fragment from the beginning of the datagram (in number of bytes).

IP fragmentation/reassembly

Example:

data: L bytes

ID# : X

original datagram

fragment 1

data: bytes 0 - L/3

ID# : X

Offset: 0

 $MTU \approx L/3$

fragment 2

data: bytes

ID# : X

L/3 - 2L/3

Offset: L/3

fragment 3

data: bytes

ID# : X

2L/3 - L

Offset: 2L/3

Modern internetworking

Mobility:

- Plug-and-play: allowing hosts to dynamically/temporarily connect to the Internet, in a particular domain. Dynamic Host Configuration Protocol (DHCP).
- Allowing hosts to move between multiple domains. Mobile IP.
- Multicasting: sending packets to multiple hosts.
 - Simple (inefficient) solutions: flooding, multiple transmissions.
 - Spanning tree, Multicast OSPF, PIM, etc.