
data link layer (e.g. Ethernet, FDDI, PPP)

network layer (IP)

transport layer (TCP, UDP)

application layer (e.g. Telnet, SMTP, HTTP)

The transport layer is not quite independent
of the network layer. The other layers have
their own addresses for locating endpoints
(like Ethernet addresses, IP addresses, email
addresses, URLs), but transport endpoints are
identified by an IP address and port number.

UDP passes <srcaddr, srcport> to receiving process so it can reply.
<srcaddr, srcport> can be ANY, destaddr can be used to select incoming interface, or ANY.
it is interested in, and matching datagrams are delivered to it.
Receiving process tells UDP which combinations of <srcaddr, srcport, destaddr, destport>

Sending process must specify destination IP address and (well-known) port number.
Source IP address can be specified to choose interface, or left up to UDP to choose.
Source port can be specified or left up to UDP to choose.

source port number destination port number

checksumlength

data

Finds paths between hosts across multiple heterogeneous networks.
Forwards datagrams (packets) along the paths.
Datagrams may be lost, altered, duplicated, and reordered.
Normally no feedback to sender.

Multiplexing: Port numbers allow multiple communicating endpoints per host.
Reliability: Lost/altered data is retransmitted until it arrives correctly.
Ordering: Data is delivered to the receiver in the order it was sent.
Flow control: The sender is blocked if the receiver cannot keep up.
Congestion control: Senders avoid congesting the network.

32 bits wide

source port number destination port number

sequence number

acknowledgement number

data offset reserved URG
ACK

PSH
RST

SYN
FIN window

checksum urgent pointer

options

data

in more than one connection (for example, an HTTP server talking to two browsers).
A TCP connection is identified by both endpoints, so one endpoint can be involved

A connection is a pair of reliable bytestreams, one in each direction. A TCP segment
can contain both data for one bytestream and an acknowledgement for the other.

Setting up a connection:
A process on host S tells TCP to put a well-known port into listen mode
(for example, 23 for Telnet, 25 for SMTP) and waits for connection requests.
A process on host C selects any local port (or lets TCP choose one) and
requests that it be connected to the well-known port on S.
The process on host S is informed of the new connection, and typically spawns
a new process to handle it, then goes back to waiting for connection requests.

Transfering data:
A sending process passes data to TCP, which sends it in segments to the
other endpoint and saves a copy until it gets an acknowledgement for the data.
If too much time elapses, the data is retransmitted. The receiver’s window and
estimates of available network resources limit how far beyond the ack number
the sender may send.

When TCP receives data, it sends a cumulative acknowledgement (possibly
piggybacked with outgoing data). Out-of-order data is buffered, because data
is passed to the receiving process in order. Segment boundaries are not visible
to the application.

Closing a connection:
Each bytestream is closed seperately. The source sends a FIN, then continues
to retransmit data as necessary until all sent data has been acknowledged.

Sequence number tells where the first data
byte goes in the stream.
Acknowledgement number tells where the first
unreceived byte is in the reverse stream.
Data offset implies the size of the options.

FIN flag means I am done sending.
SYN flag means please start receiving.
ACK flag indicates that ack number is valid.

Some options are timestamp, selective ack.

Window is available space for reverse stream.
Checksum detects corruption of header, data.

host C host S

receive
100 bytes

SYN
seq 386connect to S,p

listen on port p

accept
connection

seq 813

SYN

seq 387
ack 814

ack 487

ack 487

seq 487

seq 487
timeout

send 100 bytes

send 100 bytes

receive
200 bytes

ack 688

send 100 bytes
and close

FIN
seq 587

close
FIN

seq 814

ack 815

ack 387

Notice that SYN and FIN get
their own sequence

numbers.

Adam M. Costello <amc@cs.berkeley.edu> 1999-Sep-25-Sat
TCP & UDP

UDP (User Datagram Protocol, RFC 768) only multiplexes and detects corruption.

IP (Internet Protocol, RFC 791):

TCP (Transmission Control Protocol, RFC 793) provides:

TCP segment (payload of IP datagram):

A TCP endpoint is identified by an IP address (in the IP header!) plus a port number.

