Communication Networks: Technology & Protocols

Stavros Tripakis (stavros@eecs)

Lecture 17
October 1

FDDI example:

- When node i receives the token:
 - THTi := TTRT TRTi;
 - TRTi := 0;
 - Transmit synchronous traffic for Si time units.
 - If THTi > 0, then transmit asynchronous traffic until THTi reaches 0.

FDDI analysis

Can prove that for each node i :

TRTi < 2 TTRT.

This implies that the medium access time is at most 2 TTRT.

Note book error: assumption 2TTRT $< \rho$ to be replaced by TTRT $> \rho$.

Efficiency: close to 100%.

Wireless LANs

- Unique features of wireless networks.
- Emerging standards:
 - Europe: ETSI Hiperlan
 - US: IEEE 802.11
- Emerging products:
 - WaveLan (Lucent)
 - Metricom
 - Ricochet
 - Nokia
 - etc.

Characteristics of wireless networks

- Medium: 3D space.
- Signals: radio waves on specific frequencies.
 - Frequency is a precious resource.
- "Difficult" medium:
 - Interference, noise, shadowing, multipath effect.
 - Higher bit-error rates, lower capacity (1-2Mbps).
- Power limitations \Rightarrow non-broadcast medium.
 - Carrier-sense not very helpful.
 - Collision-detection would require full-duplex radio channel ⇒ too expensive.
- Mobility of hosts.

Simplified view of wireless network

Difficulties for carrier-sense and collision-detection.

A — B — C — D

- Hidden-terminal problem: A cannot "hear" C transmitting. If A wants to transmit to B and hears nothing, it cannot assume that collision won't happen, so carrier-sense does not help. Collision-detection not possible at sender's side.
- Exposed-terminal problem: C can hear B transmitting but does not know who the receiver is. C can still transmit to D while B transmits (to A or some other node) without the two signals interfering at the receivers' sides.

ALOHA protocol

- Multiple access without carrier-sense or collisiondetection (two terminals cannot hear each other).
- Two versions:
 - Pure ALOHA: a station can transmit at any time.
 - Slotted ALOHA: time divided into slots (each slot is enough for 1 packet), stations can transmit only at the beginning of a slot. Better performance, harder to implement (need to synchronize clocks).

ETSI Hiperlan standard

IEEE 802.11 standard

- Physical and MAC specifications.
- "Open" standard, leaves many possibilities for implementation ⇒ not clear whether different 802.11compliant devices can inter-operate.
- Physical:
 - Unlicensed bands, e.g., in US: 900MHz, 2.4GHz, 5.7GHz.
 - Various restrictions on use.
 - Direct-sequence or Frequency-hopping spread-spectrum.
- MAC: different modes of operation:
 - Centralized: a base station gives access to the nodes one-by-one.
 - Distributed: CSMA/CA.

IEEE 802.11 MAC (cont'd)

Carrier-sense:

IEEE 802.11 MAC (cont'd)

- Collision-avoidance (stemmed from MACA protocol):
 - Sender transmits special Request-to-send (RTS) packet: the packet contains the length of data to be sent, L.
 - Receiver replies with Clear-to-send (CTS) packet: this packet also contains the length of data (same as before).
 - Every node hearing the RTS remains quiet for CTS+L.
 - Every node hearing the CTS remains quiet for L.
 - If sender does not receive CTS, it knows the receiver is busy and does not transmit data.
 - CTS/RTS packets may still collide, but they are small, so the probability of collisions is reduced.

IEEE 802.11 MAC: example

Example:

