Communication Networks:
Technology & Protocols

Stavros Tripakis (stavros@eecs)

Lecture 24
October 20

Error detection & correction

Detect (and possibly correct) errors in
transmission introduced by physical layer.

Error detection happens at different layers:

At data-link: bit-error detection/correction: check
whether all bits in a packet are received correctly. If
yes, deliver packet to higher layer; otherwise, discard
packet (or, if possible, correct it and deliver it).

At network or transport layers: packet-error
detection: check whether packet is correct. If yes,
deliver to higher layer, otherwise, discard.

Where are bit-errors and
where do they come from ?

Bit inversion, e.g., send 100, receive 101.
Lost/added bits, e.g., send 100, receive 1000.

Causes of errors:
Noise: send signal of -5 Volts, receive signal of +1 Volts.
De-synchronization of sender/receiver clocks:

100110101100100101 sent

>

time
recelved

In wireless channels: multipath, shadowing, etc.

Error-detection/correction

codes

Block codes: memory-less codes.

For each “block” of (data) bits M, add some
redundant bits R = f(M), and transmit MR
(codeword).

Convolutional codes: codes with memory.

R = f(M, s), where s is the state of the code
(depends on previous blocks).

Criteria for choosing a code:

How much redundancy (overhead) does it add ?
How many errors can it detect/correct ?

How expensive is it to compute ?

Simple solution: send
multiple copies

Each packet is sent k times, k>1.
Error detection (not all copies the same).
Error correction (majority rule).
Reduces PER: packet error rate.

Too much redundancy: channel capacity
divided by k.

Can do better using more clever codes.

Parity codes

Simple parity:
For each k bits, add 1 parity bit:

Even/Odd parity: some of 1s must be even/odd.
E.g.: 1001 --- even parity ---> 1001

Detects an odd number of bit-errors, e.q.:

1001 ---> 10010 --- channel ---> 10110 (1 error)
(receiver knows there is an error).

1001 ---> 10010 --- channel ---> 01010 (2 errors)
(receiver detects no error).

Parity codes

Two-dimensional parity:

1011 1011 1 1111

______ @11> 0101 O 0101
100 1 error 10 0 010
1100 1100 O 1100
00 Zl. 0 0010 1 0010

1000 3erors , 1000

Detection of 1,2,3-bit errors.
Correction of 1 bit-error per row/column.

R ORFR OPR

Hamming codes

Bit-words of length 7 : points in n-dimensional
boolean space.

Hamming distance between two words: the
number of bits in which the words differ, e.qg.
1001, 1000|] = 1, |1001, 1100| = 2.
If valid codewords have minimum distance d,
then:
If less than d bit-errors per block, error detection.
If less than d/2 bit-errors per block, also correction.

Hamming codes

Word Codeword €(0)
|

|

egesesel SeReEeED
O OO0 © O O
800800008 0 50
G U DR © O R0
@ O Uil d) © O Cnly

oReeol NoReRoEe
ORCRONGRORORCRCREREND,
@ & Dt 8 B Gl
O O OeieslD O & Ol
£ 1 DEORRORD D O OF)

G GOD O D e

Transmitted oodeword

Recewed word W
with error that can

be corrected

2

0 0|0

-

Minimum distance
between two codewords

Recewed word
with error that can
be detected, nct
corrected

Hamming codes

What is the minimum amount of redundancy ?

Hamming: can always correct 1 bit-error per
codeword of length n, with log2(n+1)
redundant bits.

Idea: if codeword is b(1) b(2) ... b(n), then:
b(1), b(2), b(4), b(8), ..., b(27k) : parity bits.
All other bits : data bits.

Parity bit b(2”i) checks the parity of all bits b(j),
s.t. j written in base-2 has 1 in position i.

With k data bits, it is called an (n,k) code.

Hamming codes: example

Example: data = 0010. Find the (7,4) codeword.
There are 7-4=3 parity bits.
The codeword is: , where b3=0,
=1, b7=0.
Parity bit b1 checks b3 (011), b5 (101), b7 (111).
Therefore, (assuming even parity).

Parity bit b2 checks b3 (011), b6 (110), b7 (111).
Therefore,

Parity bit b4 checks b5 (101), b6 (110), b7 (111).
Therefore,

Final codeword: 0101010

Hamming codes: example
(cont’d)

Final codeword: 0101010.
Channel corrupts codeword: 0101110.

Receiver can tell which bit is inverted:
b1 = 0 is the parity bit of 0, 1, 0 : wrong.
2 = 1 is the parity bit of 0, 1, 0 : correct.
04 = 1 is the parity bit of 1, 1, 0 : wrong.

The inverted bit is the intersection of the bits checked
by bl and those checked by b4, that is, {b3,b5,b7}
and {b5,b6,b7} = {b5,b7}.

The inverted bit is not b7, since this is checked by b2
(so, b2 would be wrong, but it is correct).

Cyclic redundancy check
(CRC)

Idea:

There is a generator G, known to both sender
and receiver.

If M is the data to be sent, sender transmits
codeword (M, M mod Q).

Receiver gets (X, Y) and checks whether
XmodG =Y.
If yes, OK, otherwise discard packet.

If G is properly chosen, then if errors occur, it
should be improbable that they result in such X
and Y that X mod G =Y.

Cyclic redundancy check
(CRC)

In reality:
M, G, etc, are base-2 numbers (bit-strings).
Operations are done modulo 2 without carry.
Eg., 141 =0+0=0, 1+0 =0+1 = 1.
There are r redundancy bits.
Sender transmits T = M x 2r + R, where:
R=(Mx27r) mod G (remainder).

Receiver gets T’ (possibly corrupted) and checks
whether E = T" mod G = 0. If yes, it assumes no
error.

In some codes (error-correcting codes or ECC),
the 1s in E tell where errors occurred.

CRC : example

Let M=1101, G=1011, r=3.
Sender computes R:

long division of 1101000

by 1011.

Sender transmits
1101000+R = 1101001 =T.
Suppose channel corrupts
string: 0101011 =T".
Receiver computes

E not 0, so an error
occurred.

1101000 | 1011
1011
0110

1100
1011

0111,
1110
1011
0101,

1010
1011
0000001 »_

sender

0101011 |1011
1011
0001

111
-

recelver

CRC : properties

CRC based on the theory of finite fields.

Bit-words can be seen as polynomials:
e.g., 1001 : x*"3 + 1, x4 + xM2 + 2x : 10110

It can be shown that CRC can detect :
All 1-bit errors.

Almost all 2-bit errors, if G(x) has a factor with at
least three terms, e.g., G(x) = (x+1) (X*2+x+1) =
X3+ 2xM2 + 2x + 1 :1111.

Any odd number of errors, if G(x) has a factor x+1.
All bursts of up to m errors, if G(x) is of degree m.

Longer burst errors with probability 1-2/-m, if
bursts are randomly distributed.

CRC : properties

Generators are standardized:

CRC-m means a generator polynomial of degree m,
that is, a bit-word of length m+1.

CRC-8 : 100000111 (or x~8 + x~2 + x + 1).
CRC-10: 11000001111.

CRC-12: 100000001101.

CRC-16, CRC-32, CRC-CCITT.

Ethernet, FDDI use CRC-32, ATM uses CRC-8
and CRC-10 (bit-error rates in fibers are
extremely small, e.g., 10"-14).

Implemented in hardware using a shift register
of r bits and XOR gates (addition/subtraction
modulo 2 w/o carry is XOR).

Other block codes

Permutation codes: aimed at detecting error
bursts. E.q., /nterleaved Hamming codes:

m consecutive codewords (each of length n) are
written in an m x n matrix.

Matrix is transmitted column-wise instead of row-
wise.

A burst of up to m bit-errors will appear as 1-bit
error per m-bit column.
Turbo codes: permutations + multiple
encoders/decoders that "cooperate".

Convolutional codes

Codes with memory (e.q., represented by an

FSM, a finite-state machine). o
output

Encoder: o) G

Input / 1// o

o
Eg:Input=010111 ‘%9 @y A
Output = 7 o/

1/
Code rate : 1/2 (2 output bits per each input bit).
Implemented as a circuit.

Convolutional codes

Decoder:
Knows the FSM of the encoder.
Keeps track of the possible states the encoder might
be in, the likelyhood of each state and the history to
get to that state.
Upon receiving a bit-word, updates its information
according to the current states/likelyhoods, and the

FSM. E.qg., it knows that if encoder was at state 00,
then it couldn't have sent 01, so an error must have

occured.
At the end, it chooses the most-probable history.

Implementation: pruning is used to remove useless
histories and keep complexity low.

Convolutional codes

r=| 10 10 o0 11 -
1 1 0))) 7
B § § & B $ & &
| 1 2 :
0 1
§ L] L L &
) 0 1
1
¥ 1 v | l4
0 1
& 1 L # 1.
0 1] 3 4 0 1)

Penalty : how many bits would have to
be corrupted, for this step to be possible.

ONORORC)

Convolutional codes

r= 10 10 o0 11 -
1 1 0 2))) 2
o § § & b $ & & &
1 1 7 :
0 1 3
A\ L] | L & &
) 0 1
1
v 1 4 | l4 .l;j
0 1
\ 1 § | 1. &
w0 1] 3 4 0 1) 3

At the end, choose the path with the smallest total penalty.

Internet checksum

Used in IP, TCP, UDP.

Idea:

Sender adds up data by 32-bit words and puts
the result into the checksum field.

Receiver adds up data and compares result to
the checksum: if different, data (or checksum)
must have been corrupted.

Weaker detection properties.
Easy to implement in software.

Adequate, since almost all errors caught
already at data link layer.

