
BrowserShield: Vulnerability-Driven Filtering of Dynamic HTML

Charles Reis∗ John Dunagan† Helen J. Wang† Opher Dubrovsky† Saher Esmeir‡

Abstract
Vulnerability-driven filtering of network data can offer
a fast and easy-to-deploy alternative or intermediary to
software patching, as exemplified in Shield [43]. In this
paper, we take Shield’s vision to a new domain, inspect-
ing and cleansing not just static content, but also dy-
namic content. The dynamic content we target is the
dynamic HTML in web pages, which have become a
popular vector for attacks. The key challenge in filter-
ing dynamic HTML is that it is undecidable to statically
determine whether an embedded script will exploit the
browser at run-time. We avoid this undecidability prob-
lem by rewriting web pages and any embedded scripts
into safe equivalents, inserting checks so that the fil-
tering is done at run-time. The rewritten pages con-
tain logic for recursively applying run-time checks to
dynamically generated or modified web content, based
on known vulnerabilities. We have built and evaluated
BrowserShield, a system that performs this dynamic in-
strumentation of embedded scripts, and that admits poli-
cies for customized run-time actions like vulnerability-
driven filtering.

1 Introduction
Web browsers have become an important interface be-
tween users and many electronic services such as infor-
mation access, personal communications, office tasks,
and e-commerce. The importance of web browsers is ac-
companied by rich functionality and extensibility, which
arguably have also contributed to their popularity as a
vector of attack. During the year 2005, 8 out of 29 criti-
cal Microsoft security bulletins, corresponding to 19 vul-
nerabilities, are due to flaws in Internet Explorer (IE) or
its extensions such as ActiveX controls [1]. There were
also 6 security bulletins for Firefox [14], corresponding
to 59 vulnerabilities over the same period of time.

To date, the primary way to defend browser vulnera-
bilities is through software patching. However, studies
have shown that the deployment of software patches is

∗University of Washington CS Dept., creis@cs.washington.edu
†Microsoft, {jdunagan, helenw, opherd}@microsoft.com
‡Technion CS Dept., esaher@cs.technion.ac.il

often delayed after the patches become available. Ser-
vices such as Windows Update download patches auto-
matically, but typically delay enactment if the patch re-
quires a reboot or application restart. This delay helps
both home and corporate users to save work and schedule
downtime. An additional delay in the corporate setting
is that patches are typically tested prior to deployment,
to avoid the potentially high costs for recovering from a
faulty patch [5].

As a result, there is a dangerous time window between
patch release and patch application during which attack-
ers often reverse-engineer patches to gain vulnerability
knowledge and then launch attacks. One study showed
that a large majority of existing attacks target known vul-
nerabilities [4].

For vulnerabilities that are exploitable through appli-
cation level protocols (e.g., HTTP, RPC), previous work,
Shield [43], addresses the patch deployment problem by
filtering malicious traffic according to vulnerability sig-
natures at a firewall above the transport layer. The vul-
nerability signatures consist of a vulnerability state ma-
chine that characterizes all possible message sequences
that may lead to attacks, along with the message for-
mats that can trigger the exploitation of the application
(e.g., an overly long field of a message that triggers a
buffer overrun). The key characteristic of this approach
is that it cleanses the network data without modifying
the code of the vulnerable application. This data-driven
approach makes signature deployment (and removal if
needed) easier than it is for patches. Vulnerability signa-
ture deployment can be automatic rather than user-driven
and use the same deployment model as anti-virus signa-
tures.

These desirable features of vulnerability-driven filter-
ing motivated us to explore its potential for exploit re-
moval in web pages. The Shield approach is able to filter
static HTML pages by treating HTML as another pro-
tocol layer over HTTP. However, the challenge lies in
dynamic HTML, where pages can be dynamically gener-
ated or modified through scripts embedded in the page —
attackers could easily evade Shield filters by using scripts
to generate malicious web content at run-time, possi-
bly with additional obfuscation. Determining whether a

Web server BrowserShieldLogic Injector ClientBrowserHTML +JavaScript ShieldedHTML +JavaScriptPolicies
Figure 1: The BrowserShield System

script will eventually exploit a vulnerability is undecid-
able. Our approach to cleansing dynamic content is to
rewrite HTML pages and any embedded scripts into safe
equivalents before they are rendered by the browser. The
safe equivalent pages contain logic for recursively apply-
ing run-time checks to dynamically generated or mod-
ified web content, based on known vulnerabilities. To
this end, we have designed BrowserShield, a system that
performs dynamic instrumentation of embedded scripts
and that admits policies for changing web page behav-
ior. A vulnerability signature is one such policy, which
sanitizes web pages according to a known vulnerability.
Figure 1 gives an overview of the BrowserShield system,
showing how it transforms HTML and JavaScript using a
set of policies. Our system focuses on JavaScript because
it is the predominant scripting language used on the web;
a full fledged system would require additionally rewrit-
ing or disabling VBScript and any other script languages
used by web browsers that BrowserShield protects.

Our general approach of code rewriting for interposi-
tion has been used in other contexts. Code rewriting has
been used to isolate faults of software extensions [41].
Java bytecode rewriting has been used to enable secu-
rity polices [10, 37], such as stack inspection policies
for access control. However, rewriting script code for
web browsers poses additional challenges: JavaScript is
a prototype-based language, and the combination of this
with JavaScript’s scoping rules, implicit garbage collec-
tion and pervasive reflection required a number of tech-
niques not needed by previous rewriting work in other
contexts.

We have designed BrowserShield to adhere to well es-
tablished principles for protection systems: complete in-
terposition of the underlying resource (i.e., the HTML
document tree), tamper-proofness and transparency [3,
10, 33]. In addition, BrowserShield is a general frame-
work that supports applications other than vulnerability-
driven filtering. For example, we have authored poli-
cies that add UI invariants to prevent certain phishing
attempts.

Because BrowserShield protects web browsers by
transforming their inputs, not the browser itself, the
BrowserShield logic injector can be deployed at client

or edge firewalls, browser extensions, or web publishers
that republish third-party content such as ads.

We have implemented a prototype of the Browser-
Shield system, in which the rewriting logic is injected
into a web page at an enterprise firewall and exe-
cuted by the browser at rendering time. Our pro-
totype can transparently render many familiar web-
sites that contain JavaScript (e.g., www.google.com,
www.cs.washington.edu, www.mit.edu). We also suc-
cessfully translated and ran a large intranet portal ap-
plication (Microsoft SharePoint) that uses 549 KB of
JavaScript libraries.

We chose the firewall deployment scenario because
it offers the greatest manageability benefit, as Browser-
Shield updates can be centralized at the firewall, imme-
diately protecting all client machines in the organization
without any BrowserShield-related installation at either
clients or web servers. The main disadvantage of this
deployment scenario is that firewalls have no visibility
into end-to-end encrypted traffic. Nevertheless, commer-
cial products [35] already exist that force traffic cross-
ing the organization boundary to use the firewall (in-
stead of a client within the organization) as the encryp-
tion endpoint, trading client privacy for aggregate orga-
nization security. Also, the browser extension and web
publisher deployment scenarios transparently handle en-
crypted traffic.

Our evaluation focuses on the effectiveness of the
BrowserShield design and the performance of our im-
plementation. Our analysis of recent IE vulnerabil-
ities shows that BrowserShield significantly advances
the state-of-the-art; existing firewall and anti-virus tech-
niques alone can only provide patch-equivalent protec-
tion for 1 of the 8 IE patches from 2005, but combining
these two with BrowserShield is sufficient to cover all
8. We evaluated BrowserShield’s performance on real-
world pages containing over 125 KB of JavaScript. Our
evaluation shows a 22% increase in firewall CPU utiliza-
tion, and client rendering latencies that are comparable
to the original page latencies for most pages.

The rest of the paper is organized as follows: In Sec-
tion 2 we describe a typical browser vulnerability that we
would like to filter. We discuss the design of Browser-
Shield in Section 3, and give BrowserShield’s JavaScript
rewriting approach in detail in Section 4. We describe
our implementation in Section 5. In Section 6 we give
our evaluation of BrowserShield. We discuss related
work in Section 7, and conclude in Section 8.

2 A Motivating Example
As a motivating example of vulnerability-driven filter-
ing, we consider MS04-040: the HTML Elements Vul-
nerability [28] of IE from December, 2004. In this vul-
nerability, IE had a vulnerable buffer that was overrun if

function (tag) {
var len = 255; // not the actual limit

// Look for long attribute values
if ((contains("name", tag.attrs) &&

tag.attrs["name"].length > len) &&
(contains("src", tag.attrs) &&
tag.attrs["src"].length > len)) {

// Remove all attributes to be safe
tag.attrs = [];
// Return false to indicate exploit
return false;

}
// Return true to indicate safe tag
return true;

}

Figure 2: JavaScript code snippet to identify exploits of
the MS04-040 vulnerability

both the name and the src attributes were too long in
an iframe, frame, or embed HTML element.

Figure 2 shows a corresponding snippet of JavaScript
code that can be used to identify and to remove exploits
of this vulnerability. As input, the function takes an ob-
ject representing an HTML tag, including an associative
array of its attributes. When invoked on an <iframe>,
<frame> or <embed> tag, the function determines
whether the relevant attributes exceed the size of the vul-
nerable buffer.

The goal of BrowserShield is to take this vulnerability-
specific filtering function as a policy and apply it to all
occurrences of the vulnerable tags whether they are in
static HTML pages or dynamically generated by scripts.
The framework could react in many ways to detected ex-
ploits; our current system simply stops page rendering
and notifies the user. Vulnerability driven filtering, used
as a patch alternative or intermediary, should prevent all
exploits of the vulnerability (i.e., zero false negatives),
and should not disrupt any exploit-free pages (i.e., zero
false positives). We design BrowserShield to meet these
requirements.

3 Overview
The BrowserShield system consists of a JavaScript li-
brary that translates web pages into safe equivalents and
a logic injector (such as a firewall) that modifies web
pages to use this library.

BrowserShield uses two separate translations along
with policies that are enforced at run-time. The first
translation, THTML, translates the HTML: It tokenizes
an HTML page, modifies the page according to its
policies (such as the one depicted in Figure 2) and
wraps the script elements so that the second translation,

THTML

<html>
<head>
</head>
<body><script>

alert(“hello world!”);
</script></body>

</html>

<html>
<head>

<script src=“http://internal/bshield.js”>
</head>
<body><script>

eval(bshield.translate(
“alert(\“hello world!\”);”

);
</script></body>

</html>

Figure 3: THTML Translation

Tscript

Translated
JavaScript

Interposition Layer
with Policies

HTML
Document Tree

Original
JavaScript

HTML
Document Tree

Figure 4: Tscript Translation

Tscript, will be applied at run-time during page render-
ing at the browser. THTML is depicted in Figure 3 us-
ing bshield.translate(...) to invoke Tscript.
Tscript, as depicted in Figure 4, parses and rewrites
JavaScript to access the HTML document tree through
an interposition layer. This layer regulates all accesses
and manipulations of the underlying document tree, re-
cursively applies THTML to any dynamically generated
HTML, and recursively applies Tscript to any dynami-
cally generated script code. Additionally, the interposi-
tion layer enforces policies, such as filtering exploits of
known vulnerabilities.

Since users can choose to disable scripting in their web
browsers, we must ensure BrowserShield protects such
users even without the JavaScript library. We transpar-
ently handle such clients by applying THTML at the logic
injector, independent of the user’s browser. Any mod-
ifications due to Tscript are still in place, but disabling
scripts has made them irrelevant, along with the original
script code.

Browser extensions, such as ActiveX controls, can
also manipulate the document tree. The security model
for such extensions is that they have the same privileges
as the browser, and thus we focus on interposing between
script and the extensions, not between the extensions and
the document tree. This allows BrowserShield to prevent
malicious script from exploiting known vulnerabilities in
trusted browser extensions.

We have designed BrowserShield to adhere to well es-
tablished principles for protection systems [3, 10, 33]:

• Complete interposition: All script access to the HTML
document tree must be mediated by the BrowserShield
framework.

• Tamper-proof: Web pages must not be able to modify
or tamper with the BrowserShield framework in unin-
tended ways.

• Transparency: Apart from timing considerations and
reasonable increases in resource usage, web pages
should not be able to detect any changes in behavior
due to the BrowserShield framework. The sole excep-
tion is for policy enforcement (e.g., the behavior of a
page containing an exploit is visibly modified).

• Flexible policies: We desire the BrowserShield frame-
work to have a good separation between mechanism
and policy, to make the system flexible for many ap-
plications.

4 Design
We now give a detailed discussion of the BrowserShield
script library. While much previous work uses code
rewriting for interposition [10, 11, 12, 41], our approach
is heavily influenced by the fact that our code lives in
the same name space as the code it is managing, and
also several subtleties of JavaScript. First, JavaScript
is a prototype-based language [39], not a class-based
language like Java. In prototype-based languages, ob-
jects are created using other objects as prototypes, and
can then be modified to have a different set of member
variables and methods. A consequence of this is that
JavaScript has no static typing: different data types can
be assigned to the same variable, even for references to
functions and object methods. Second, scoping issues
must be dealt with carefully, as assigning a method to a
new object causes any use of the this keyword in the
method to bind to the new object. Thus, any interposition
mechanisms must ensure that this is always evaluated
in the intended context. Third, JavaScript uses a garbage
collector that is not exposed to the language. Fourth, the
language has pervasive reflection features that let a script
explore its own code and object properties.

As a result of these subtleties, BrowserShield must
use a series of interposition mechanisms: method wrap-
pers, new invocation syntax, and name resolution man-
agement. We justify and describe these mechanisms in
the following subsections, organized by our goals for the
framework.

4.1 Complete Interposition
To provide complete interposition, BrowserShield must
mediate all possible accesses and manipulations allowed
by the Document Object Model (DOM) over the HTML
document trees (including script elements). In this sub-
section, we detail how we achieve this using script

rewriting to interpose on function calls, object method
calls, object property accesses, object creation, and con-
trol constructs. We summarize our rewriting rules in Ta-
ble 1.

Function and Object Method Calls There are two ways
to rewrite function or method calls for interposition:
callee rewriting or caller rewriting.

In callee rewriting, the original function or method
definition is first saved under a different name, and then
the original function or method is redefined to allow in-
terception before calling the saved original. We call the
redefined function the wrapper. The benefit of callee
rewriting is that the rewritten code is localized — only
functions or methods of interest are modified, but not
their invocations throughout the code. However, callee
rewriting does not work for cases where functions or
methods cannot be redefined.

In caller rewriting, the invocation is rewritten to an in-
terposition function without changing the original func-
tion’s definition. The interposition function looks up the
appropriate interposition logic based on the identity of
the target function or method. Although caller rewriting
causes more pervasive code changes, it can interpose on
those functions or methods that cannot be overwritten.

In BrowserShield, we have to use a hybrid of both
approaches to accommodate the previously mentioned
JavaScript subtleties.

JavaScript contains some native functions that can-
not be redefined (e.g., alert), which necessi-
tates caller rewriting. The first row of Table 1
shows how BrowserShield indirectly invokes a func-
tion with its list of parameter values by passing it
to bshield.invokeFunc(func, paramList),
where bshield is a global object that we introduce to
contain BrowserShield library code.

However, using caller rewriting alone for interpos-
ing on method calls requires maintaining references to
state otherwise eligible for garbage collection. Caller
rewriting requires maintaining a map from functions and
methods of interest to their associated interposition logic.
Maintaining this map as a global table would require
maintaining a reference to methods of interest on every
object ever created, since each object may correspond
to a distinct prototype requiring distinct interposition
logic. These global table references would prevent recla-
mation of objects otherwise eligible for garbage collec-
tion, possibly causing pages that render normally with-
out BrowserShield to require unbounded memory. To
avoid this, BrowserShield maintains the necessary inter-
position logic on each method, allowing unused state to
be reclaimed.

It might seem tempting to maintain this interposi-
tion logic as a property on the object. Unfortunately,

Construct Original Code Rewritten Code
Function Calls foo(x); bshield.invokeFunc(foo, x);

Method Calls document.write(s); bshield.invokeMeth(document, "write", s);

Object Properties obj.x = obj.y; bshield.propWrite(obj, "x",

bshield.propRead(obj, "y"));

Object Creation var obj = new MyClass(x); var obj = bshield.createObj(

"MyClass", [x]);

with Construct with (obj) { x = 3; } (bshield.undefined(obj.x) ? x = 3 :

// x refers to obj.x bshield.propWrite(obj, "x", 3));

Variable Names bshield = x; bshield = x;

in Construct for (i in obj) {...} for (i in obj) {
if (i=="bshield") continue; ...

}

Table 1: Sample Code for BrowserShield Rewrite Rules

aliases to the interposed method can be created, and
these aliases provide no reference to the object contain-
ing the interposition logic. For example, after “f =
document.write”, any interposition logic associated
with document.write is not associated with f; find-
ing the logic would require a global scan of JavaScript
objects. Therefore, we use callee rewriting to install a
wrapper for the methods of interest, such as those that
insert new HTML. These wrappers are installed by re-
placing the original method with the wrapper and saving
the original method as a property on the wrapper (which
is itself an object). Because we interpose on object prop-
erty accesses, object creation, and method invocations,
we can install wrappers when an object is first created or
used.

Thus far we have justified caller rewriting for func-
tions and callee rewriting for methods. Because
JavaScript allows functions to be aliased as methods on
objects (e.g., “obj.m = eval”), we also must per-
form caller rewriting for method calls. The rewritten
method invocations can then check for potential aliased
functions.

JavaScript scoping introduces additional complexity
in method interposition. The original method cannot be
simply called from the method wrapper, because saving
the original method as a property of the wrapper causes
the keyword this in the original method to refer to
the wrapper rather than the intended object. To avoid
this problem, we use a swapping technique: The wrap-
per temporarily restores the original method during the
wrapper execution, and then reinstalls the wrapper for
the object method before the wrapper returns.

During swapping, the first step is to restore the
original method. One challenge here is that the
method name may not be the same as when the
method wrapper was installed, because methods can
be reassigned. We solve this problem again with

caller rewriting through the rewritten method in-
vocation syntax invokeMeth(obj, methName,
paramList), passing the name of the method to the
method wrapper.

The swapping process requires an additional check
to handle recursive methods, since otherwise a recur-
sive call would directly invoke the original method rather
than the swapped out method wrapper, bypassing any
interposition logic on nested calls. To this end, the
invokeMeth method checks to see if a wrapper is al-
ready swapped out. If so, invokeMeth invokes the
wrapper again, ignoring any swapping logic until the
original recursive call completes. Because JavaScript is
single threaded, we have not needed to handle concur-
rency during this process.

Object Properties The HTML document tree can
be accessed and modified through JavaScript ob-
ject property reads and writes. For example, the
HTML in a page can be modified by assign-
ing values to document.body.innerHTML, and
a script element’s code can be modified by chang-
ing its text property. To interpose on such ac-
tions, BrowserShield replaces any attempts to read
or write object properties with calls to the global
bshield object’s propRead(obj, propName)
and propWrite(obj, propName, val) meth-
ods, as shown in Table 1. We use an object’s identity at
run-time to check whether an assignment will create new
HTML or script code. If so, propWrite applies either
THTML or Tscript to the value as needed. These identity
checks can be done by calling JavaScript library func-
tions that reveal whether the object is part of the HTML
document tree. We ensure that BrowserShield uses the
authentic library functions, and not malicious replace-
ments, by creating private aliases of the functions before
the script begins to run.

This interposition on property accesses is required
for installing wrappers when an object is first accessed.
Additionally, while wrappers are swapped out during
method execution, propRead must ensure that any at-
tempts to access the original method are redirected to the
swapped-out wrapper.

Object Creation To ensure that method wrappers are
initialized in the case of new object creation, Browser-
Shield must also rewrite the instantiation of new objects
to use the createObj(className, paramList)
method. The createObj method is also responsible
for interposing on the JavaScript Function construc-
tor, which can create new executable functions from its
parameters as follows:

f = new Function("x", "return x+1;");

In this case, createObj applies Tscript to the code ar-
gument before instantiating the function.

Control Constructs For control constructs (e.g., if-
then blocks, loops, etc.), the bodies of the con-
structs are translated by Tscript. The bodies of tradi-
tional function constructors (e.g., function foo()
{...}) are translated by Tscript as well.

JavaScript’s with construct presents a special case, as
it has the ability to modify scope. As shown in Table 1,
free variables within a with block are assumed to refer
to properties on the designated object, unless such prop-
erties are undefined. This construct is purely “syntactic
sugar” for JavaScript, and thus we handle this case with
a syntactic transformation.

4.2 Tamper-Proof
Preventing scripts from tampering with BrowserShield
is challenging because BrowserShield logic lives in the
same name space as the code it is managing. To address
this, we use name resolution management to ensure that
all BrowserShield logic is inaccessible.

Variable Names In the common case, variable names in
a script can remain unchanged. However, we make the
bshield name inaccessible to scripts to prevent tam-
pering with the global BrowserShield data structure.

To do this, we rename any variable references to
bshield by appending an underscore to the end of the
name. We also append an underscore to any name that
matches the bshield(*) regular expression (i.e., that
begins with bshield and is optionally followed by any
number of underscores). Note that JavaScript places no
limit on variable name length.

Reflection Reflection in JavaScript allows script code to
explore the properties of objects as well as its own code,
using two pervasive language features: the syntax for ac-
cessing object properties (such as myScript.text or
myScript[i]), and the JavaScript in construct.

In the first case, BrowserShield must hide some ob-
ject properties, because it maintains per-object interpo-
sition state (details given in Section 4.3) on some ob-
jects. Such state is stored on a bshield property
of the object, which we hide using property access in-
terposition. Specifically, if a call to propRead or
propWrite attempts to access a property name begin-
ning with bshield, we simply append an underscore to
the name, thus returning the property value that the orig-
inal script would have seen. Since array indices can also
be used to access object properties, we must return the
appropriate value for the given index.

In the second case, the in construct allows itera-
tion through all of an object’s properties by name. The
bshield property of an object must be hidden during
the iteration if it is present. Thus, BrowserShield inserts
a check as the first line of the iteration loop, jumping to
the next item if the property name is bshield. This is
accomplished using the rewrite rule shown in Table 1.

4.3 Transparency
The BrowserShield framework must also ensure its pres-
ence is transparent to the original script’s semantics. The
techniques for preventing tampering described in Sec-
tion 4.2 contribute to this goal by making BrowserShield
inaccessible. Transparency additionally requires that we
present to scripts the context they would have in the ab-
sence of BrowserShield.

Shadow Copies Scripts can access both their own script
code and HTML, which BrowserShield modifies for in-
terposition. To preserve the intended semantics of such
scripts, BrowserShield retains a “shadow copy” of all
original code before rewriting it. The shadow copy is
stored on a bshield property of the object. Interposi-
tion on property reads and writes allows the shadow copy
to be exposed to scripts for access and modification.

Shadowing translated HTML requires additional care.
During THTML transformation, a policy may rewrite
static HTML elements. We must similarly create shadow
copies for such translated HTML elements, but we can-
not directly create a JavaScript object in HTML to store
the shadow copy. Thus, we persist the shadow copy to a
bshield HTML tag attribute during THTML, which is
later used by the BrowserShield library. For example, a
policy function that rewrites link URLs may modify the
href attribute of <a> tags during the THTML transfor-
mation. Then, the persisted shadow copy looks like this:

<a href="http://translatedLink"
bshield="{href:’http://originalLink’}">

When BrowserShield looks for the bshield property
of the DOM object corresponding to this tag, it inter-
prets this string into an actual bshield property with a
shadow copy for the href attribute.

Because scripts can only interact with shadow copies
of their code and not modified copies, our transforma-
tions are not required to be idempotent. That is, we will
never apply THTML or Tscript to code that has already
been transformed.

Preserving Context The JavaScript eval function eval-
uates a string as script code in the current scope, and any
occurrence of the this keyword in the string is bound
to the current enclosing object. Thus, if eval were to be
called from within bshield.invokeFunc, the this
keyword might evaluate differently than in the original
context.

For this reason, the rewriting rule for functions is ac-
tually more complex than shown in Table 1. Instead,
the rewritten code first checks if the function being in-
voked is eval. If so, the parameter is translated using
Tscript and then evaluated in the correct context; other-
wise, invokeFunc is called as described before. Thus,
the code is rewritten as follows:

bshield.isEval(bshield.func = foo) ?
eval(bshield.translate(x)) :
bshield.invokeFunc(bshield.func, x);

Note that the function expression foo is assigned to a
temporary state variable on the bshield object, so that
the expression is not evaluated a second time in the call
to invokeFunc.

This check is a special case that is only needed for
eval, because eval is the only native function in
JavaScript that accesses this. Other native functions,
such as alert or parseInt, do not access this, and
can be evaluated within invokeFunc.

4.4 Flexible policies
The final goal of BrowserShield is to support flexible
policy enforcement. This can be achieved by sepa-
rating mechanism from policy: Our mechanism con-
sists of the rewrite rules for translating HTML and
script code, and our policy consists of the run-time
checks invoked by the rewritten code. Some run-time
checks are critical for complete interposition, such as
applying Tscript to any string passed to eval or the
Function constructor, or applying THTML to any
string passed to document.write or assigned to
document.body.innerHTML. These checks are al-
ways applied, regardless of what policy is in place. Be-
cause the interposition is policy-driven, our system can
be made incrementally complete. For example, if an un-
documented API is discovered that can manipulate the
document tree, we simply add a new policy to interpose
on this API.

The remaining run-time checks are used for enforc-
ing flexible policies, such as the MS04-040 vulnerabil-
ity filter in Figure 2. Such policy functions are down-

loaded separately from the remainder of the Browser-
Shield code, and they can be updated and customized
based on the intended application.

Policy functions are given the chance to inspect and
modify script behavior at all interposition points, includ-
ing property reads and writes, function and method invo-
cations, and object creations. We also allow policy writ-
ers to introduce new global state and functions as part
of the global bshield object, or introduce local state
and methods for all objects or for specific objects. Policy
functions for HTML can also be registered by tag name.
The tags are presented to HTML policy functions as part
of a token stream of tags and text, without a full parse
tree. It is also possible for policy functions to further
parse the HTML token stream to gain additional context,
although we have not yet encountered a need for this in
the policies we have authored.

5 Implementation
We have implemented a prototype of BrowserShield as
a service deployed at a firewall and proxy cache. Our
prototype consists of a standard plugin to Microsoft’s In-
ternet Security and Acceleration (ISA) Server 2004 [21],
and a JavaScript library that is sent to the client with
transformed web documents. The ISA plugin plays the
role of the BrowserShield logic injector.

We implemented our ISA plugin in C++ with 2,679
lines of code. Our JavaScript library has 3,493 lines
(including comments). Most of the ISA plugin code
is devoted to parsing HTML, while about half of
the JavaScript library is devoted to parsing HTML or
JavaScript. This is a significantly smaller amount of code
than in a modern web browser, which implies that our
trusted computing base is small compared to the code
base we are protecting.

The ISA plugin is responsible for applying the
THTML transformation to static HTML. The ISA plugin
first inserts a reference to the BrowserShield JavaScript
library into the web document. Because this library is
distributed in a separate file, clients automatically cache
it, reducing network traffic on later requests. THTML

then rewrites all script elements such that they will be
transformed using Tscript at the client before they are ex-
ecuted. Figure 3 depicts this transformation; note that it
does not require translating the JavaScript at the firewall.

In our implementation, the firewall component applies
THTML using a streaming model, such that the ISA
Server can begin sending transformed data to the client
before the entire page is received. This streaming model
also means that we do not expect the filter to be vulnera-
ble to state-holding DoS attacks by malicious web pages.

One complexity is that BrowserShield’s HTML pars-
ing and JavaScript parsing must be consistent with that
of the underlying browser. Any inconsistency will cause

false positives and false negatives in BrowserShield run-
time checks. For our prototype, we have sought to match
IE’s behavior through testing and refinement. If future
versions of browsers exposed this logic to other pro-
grams, it would make this problem trivial.

When the browser starts to run the script in the page,
the library applies Tscript to each piece of script code,
translating it to call into the BrowserShield interposition
layer. This may sometimes require decoding scripts, a
procedure that is implemented in publicly available li-
braries [34] and which does not require cryptanalysis,
though we have not yet incorporated it in our implemen-
tation.

A final issue in Tscript is translating scripts that
originate in source files linked to from a source tag.
THTML rewrites such source URLs so that they
are fetched through a proxy. The proxy wraps the
scripts in the same way that script code embedded
directly in the page is wrapped. For example, a script
source URL of http://foo.com/script.js
would be translated to http://rewritingProxy/
translateJS.pl?url=http://foo.com/
script.js. Tscript is then applied at the client after
the script source file is downloaded.

6 Evaluation
Our evaluation focuses on measuring BrowserShield’s
vulnerability coverage, the complexity of authoring vul-
nerability filters, the overhead of applying the Browser-
Shield transformations at firewalls, and the overhead of
running the BrowserShield interposition layer and vul-
nerability filters at end hosts.

6.1 Vulnerability Coverage
We evaluated BrowserShield’s ability to protect IE
against all critical vulnerabilities for which Microsoft re-
leased patches in 2005 [1]. Of the 29 critical patches
that year, 8 are for IE, corresponding to 19 IE vulnera-
bilities. These vulnerabilities fall into three classes: IE’s
handling of (i) HTML, script, or ActiveX components,
(ii) HTTP, and (iii) images or other files. Table 2 shows
how many vulnerabilities there were in each area, and
whether BrowserShield or another technology could pro-
vide patch-equivalent protection. The BrowserShield de-
sign is focused on HTML, script, and ActiveX controls,
and it can successfully handle all 12 of these vulnerabil-
ities. This includes vulnerabilities where the underlying
programmer error is at a higher layer of abstraction than
a buffer overrun, e.g., a cross-domain scripting vulnera-
bility. Handling HTTP accounted for 3 of the 19 vulnera-
bilities. Perhaps surprisingly, 2 out of 3 of these vulnera-
bilities required BrowserShield in addition to an existing
HTTP filter, such as Snort [38] or Shield [43]. This is

because malformed URLs could trigger the HTTP layer
vulnerabilities regardless of whether the URL came over
the network or was generated internally by the browser.
BrowserShield is able to prevent the HTML/script layer
from triggering the generation of these bad HTTP re-
quests. Processing images or other files accounted for
the remaining 4 vulnerabilities. Patch-equivalent protec-
tion for these vulnerabilities is already available using
existing anti-virus solutions [13].

vulnerability protected by
type # BrowserShield HTTP filter antivirus
HTML, script, 12 12 0 0ActiveX

HTTP 3 2∗ 3∗ 0

images and 4 0 0 4other files

Table 2: BrowserShield Vulnerability Coverage. ∗Two of
the HTTP vulnerabilities required both BrowserShield and
an HTTP filter to provide patch-equivalent protection.

Because management and deployment costs are of-
ten incurred on a per-patch basis, we also analyze the
vulnerabilities in Table 2 in terms of the corresponding
patches. For the 8 IE patches released in 2005, combin-
ing BrowserShield with standard anti-virus and HTTP
filtering would have provided patch-equivalent protec-
tion in every case, greatly reducing the costs associ-
ated with multiple patch deployments. In the absence
of BrowserShield, anti-virus and HTTP filtering would
have provided patch-equivalent protection for only 1 of
the IE patches.

6.2 Authoring Vulnerability Filters
To evaluate the complexity of vulnerability filtering, we
choose three vulnerabilities from three different classes:
HTML Elements Vulnerability (MS04-040), COM Ob-
ject Memory Corruption (MS05-037), and Mismatched
DOM Object Memory Corruption (MS05-054).

We filtered for the MS04-040 vulnerability using the
function shown in Figure 2. Registering this filter for
each of the three vulnerable tags is as simple as:
bshield.addHTMLTagPolicy("IFRAME", func);

COM object vulnerabilities typically result from IE in-
stantiating COM objects that have memory errors in their
constructors. The IE patch blacklists particular COM
objects (identified by their clsid). Implementing an
equivalent blacklist requires adding checks for an HTML
tag (the OBJECT tag) and sometimes a JavaScript func-
tion (the ActiveXObject constructor, which can be
used to instantiate a subset of the COM objects accessi-
ble through the OBJECT tag). In the case of MS05-037,
it does not appear to be possible to instantiate the vulner-
able COM object using the ActiveXObject construc-

tor. The OBJECT tag filter is conceptually similar to the
function shown in Figure 2.

The MS05-054 vulnerability results when the
window object, which is not a function, is called as
a function in the outermost scope. Our interposition
layer itself prevents window from being called as a
function in the outermost scope since all function calls
are mediated by BrowserShield with invokeFunc.
Hence there is no need for a filter. Nevertheless, if
this vulnerability had not depended on such a scoping
constraint, we could simply have added a filter to prevent
calling the object as a function.

To test the correctness of our vulnerability filters, we
installed an unpatched image of Windows XP Pro within
a virtual machine, and created web pages for each of
the vulnerabilities that caused IE to crash. Applying
BrowserShield with the filters caused IE to not crash
upon viewing the malicious web pages. We tested the
fidelity of our filters using the same set of URLs that we
used in our evaluation of BrowserShield’s overhead (de-
tails are in Section 6.3). Under side-by-side visual com-
parisons, we found that the filters had not changed the
behavior of any of the web pages, as desired.

6.3 Firewall Performance
We evaluated BrowserShield’s performance by scripting
multiple IE clients to download web pages (and all their
embedded objects) through an ISA server running the
BrowserShield firewall plugin. The ISA firewall ran on
a Compaq Evo PC containing a 1.7GHz Pentium 4 mi-
croprocessor and 1 GB RAM. Because we are within a
corporate intranet, our ISA server connected to another
HTTP proxy, not directly to web sites over the inter-
net. We disabled caching at our ISA proxy, and we fixed
our IE client cache to contain only the BrowserShield
JavaScript library, consistent with the scenario of a fire-
wall translating all web sites to contain a reference to this
library.

We ran 10 IE processes concurrently using 10 pages
that IE could render quickly (so as to increase the load on
the firewall), and repeatedly initiated each page visit ev-
ery 5 seconds. We used manual observation to determine
when the load on the ISA server had reached a steady
state.

We chose these 10 pages out of a set of 70 URLs that
are the basis for our client performance macrobench-
marks. This set is based on a sample of 250 of the
top 1 million URLs clicked on after being returned as
MSN Search results in Spring 2005, weighted by click-
through count. Specifically, the 70 URLs are those that
BrowserShield can currently render correctly; the re-
maining URLs in the sample encountered problems due
to incomplete aspects of our implementation, such as
JavaScript parsing bugs.

resource unmodified browsershield
cpu utilization 15.0% 18.3%
virtual memory 317 MB 319 MB
working set 45.5 MB 46.6 MB
private bytes 26.3 MB 27.3 MB

Table 3: BrowserShield Firewall overheads. “Virtual
memory” measures the total virtual memory allocated to
the process; “working set” measures memory pages that
are referenced regularly; “private bytes” measures mem-
ory pages that are not sharable.

We measured CPU and memory usage at the firewall,
as shown in Table 3. CPU usage increased by about 22%,
resulting a potential degradation of throughput by 18.1%;
all aspects of memory usage we measured increased by
negligible amounts. We also found that network usage
increased only slightly (more detail in Section 6.4.2).

6.4 Client Performance
We evaluated the client component of our Browser-
Shield implementation through microbenchmarks on the
JavaScript interposition layer and macrobenchmarks on
network load, client memory usage, and the latency of
page rendering.

6.4.1 Microbenchmarks

We designed microbenchmarks to measure the overhead
of individual JavaScript operations after translation. Ta-
ble 4 lists our microbenchmarks and their respective
BrowserShield slow-down. Our results are averages over
10 trials, where each trial evaluated its microbenchmark
repeatedly, and lasted over half a second. For the first
11 micro-benchmarks, the standard deviation over the 10
trials was less than 2%. In the last case it was less than
8%. The slowdown ratio was computed using the aver-
age time required per microbenchmark evaluation with
and without the interposition framework.

operation slowdown
1 i++ 1.00
2 a = b + c 1.00
3 if 1.07
4 string concat (‘+’) 1.00
5 string concat (‘concat’) 61.9
6 string split (‘split’) 21.9
7 no-op function call 44.8
8 x.a = b (property write) 342
9 eval of minimal syntactic structure 47.3
10 eval of moderate syntactic structure, minimal computation 136
11 eval of moderate syntactic structure, significant computation 1.34
12 image swap 1.07

Table 4: BrowserShield Microbenchmarks. Slowdown
is the ratio of the execution time of BrowserShield trans-
lated code and that of the original code.

Microbenchmarks 1-4 measure operations for which
we expect no changes during rewriting, and hence no

slowdown. The only slowdown we measure is in the
case of the if statement. Further examination showed
that the BrowserShield translation inserted a semi-colon
(e.g., var a = 1 (linebreak) changed to var a
= 1; (linebreak)). This results in a 7% slow-
down.

Microbenchmarks 5-8 measure operations we expect
to incur a slowdown comparable to an interpreter’s slow-
down. As detailed in Section 4, BrowserShield trans-
lation introduces additional logic around method calls,
function calls, and property writes, leading to a slow-
down in the range of 20x-400x. This slowdown is in
line with good interpreters [32], but worse than what is
achieved by rewriting systems targeting other languages,
e.g., Java bytecode [10]. BrowserShield is paying a price
for the JavaScript subtleties that previous rewriting sys-
tems did not have to deal with. We were curious about
the difference in slowdown between the two string meth-
ods; an additional experiment showed that the differ-
ence can be attributed to the JavaScript built-in concat
method requiring about 3 times as much CPU as the
built-in split method. Also, it is not surprising that
property writes have a greater slowdown than function or
method calls because property writes need to both guard
the BrowserShield namespace and interpose on writes to
DOM elements (such as the text property of scripts).

Microbenchmarks 9-11 explore the overhead of trans-
lating JavaScript code of various complexity. The “eval
of minimal syntactic structure” microbenchmark mea-
sures the cost of translating and then evaluating a simple
assignment. The cause of the large slowdown is the addi-
tional work done by eval in the BrowserShield frame-
work: parsing, constructing an AST, modifying the AST,
and outputting the new AST as a JavaScript program.
The two subsequent “eval of moderate syntactic struc-
ture” microbenchmarks measure the cost of translating
and evaluating a simple for(;;) loop. This simply
demonstrates that as the cost of the computation inside
the simple loop increases, the cost of translating the code
can decrease to a small fraction of the overall computa-
tional cost.

The last microbenchmark measures the overhead of
performing a simple manipulation of the DOM – swap-
ping two 35 KB images. This microbenchmark is de-
signed to measure the relative importance of overheads in
the JavaScript engine when the JavaScript is manipulat-
ing the layout of the HTML page. The JavaScript code to
swap these two images requires two property writes (i.e.,
img.src = ’newLink’), and we described above
how BrowserShield translation adds significant overhead
to property writes. Nonetheless, the overall slowdown is
less than 8%. In particular, the raw time to swap the im-
age only increases from 26.7 milliseconds to 28.5 mil-
liseconds. This suggests that even the large overheads

that BrowserShield translation adds to some language
constructs may still be quite small in the context of a
complete web page.

In summary, BrowserShield incurs a significant over-
head on the language constructs where it must add
interpreter-like logic, but these overheads can be quite
small within the context of the larger DOM manipula-
tions in embedded scripts.

6.4.2 Macrobenchmarks

We designed macrobenchmarks to measure the overall
client experience when the BrowserShield framework is
in place. In particular, the macrobenchmarks include
all the dynamic parsing and translation that occurs be-
fore the page is rendered, while the microbenchmarks
primarily evaluated the performance of the translated
code accomplishing a task relative to the untranslated
code accomplishing that same task. To this end, we
scripted an instance of IE to download each of the 70
web pages in our workload 10 times. For the same rea-
sons given in our evaluation of the BrowserShield ISA
component, we maintained that the only object in the IE
cache was the BrowserShield JavaScript library. These
caching policies represent a worst-case for client latency.
This measurement includes the overhead of the three fil-
ters that we discussed in Section 6.1. We then repeated
these measurements without the BrowserShield frame-
work and translation.

We set a 30 second upper limit on the time to render
the web page, including launching secondary (popup)
windows and displaying embedded objects, but not wait-
ing for secondary windows to render. We visually veri-
fied that the programmatic signal that rendering had com-
pleted indeed corresponded to the user’s perception that
the page had rendered. IE hit the 30-second timeout sev-
eral times in these trials, and it hit the timeouts both
when the BrowserShield framework and translation were
present and when the framework and translation were ab-
sent. We did not discern any pattern in these timeouts,
and because our experiments include factors outside our
control, such as the wide-area network and the servers
originating the content, we do not expect page download
times to be constant over our trials. We re-ran the trials
that experienced the timeouts.

Figure 5 shows the CDF of page rendering with
and without BrowserShield. On average BrowserShield
added 1.7 seconds to page rendering time. By way of
contrast, the standard deviation in rendering time with-
out BrowserShield was 1.0 seconds.

In Figure 6, we further break down the latency for
the 10 pages that took the most time to render under
BrowserShield. They experienced an average increase in
latency of 6.3 seconds, requiring 3.9 seconds on average
without BrowserShield and 10.2 seconds on average with

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18

Time to Render (seconds)

P
e
rc

e
n

ta
g

e
 o

f
P

a
g

e
s

unmodified

browsershield

Figure 5: Latency CDF with and without BrowserShield

0

5

10

15

20

Pages

T
im

e
 t

o
 R

e
n

d
er

 (
s
e
c
o

n
d

s
) browsershield: other overhead

browsershield: translation at client

unmodified

Figure 6: Breakdown of latency for slowest 10 pages un-
der BrowserShield

BrowserShield. Of this 6.3 seconds of increased latency,
we found that 2.8 seconds (45%) could be attributed to
the overhead of dynamically translating JavaScript and
HTML within IE. We attribute the remaining overhead to
effects such as the overhead of evaluating the translated
code, and the time to modify the HTML at the firewall.

We broke down the latency of dynamic translation for
both HTML and JavaScript into 2 parts each: time to
parse the JavaScript/HTML into an AST and convert the
modified AST back to a string, and the time to modify
the AST. We found that the time to parse the JavaScript
to and from a string was always more than 70% of the
overall latency of dynamic translation, and it averaged
80% of the overall latency. Figure 7 shows the JavaScript
parsing time versus the number of kilobytes. Fitting a
least-squares line to this data yields an average parse rate
of 4.1 KB of JavaScript per second, but there was signif-
icant variation; the slowest parse rate we observed was
1.3 KB/second.

Figure 8 shows the memory usage of page rendering
with and without BrowserShield. We found that private
bytes (memory pages that are not sharable) was the client
memory metric that increased the most when rendering
the transformed page. Private memory usage increased
on average by 11.8%, from 19.8 MB to 22.1 MB. This
increase was quite consistent; no page caused memory
usage to increase by more than 3 MB.

0

1

2

3

4

5

6

7

0 5 10 15 20 25

JavaScript (KB)

T
im

e
to

 P
ar

se
 J

av
aS

cr
ip

t
(s

ec
o

n
d

s)

Figure 7: Latency of JavaScript parsing

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25

Client Memory Usage (MB)
P

er
ce

n
ta

g
e

o
f

P
ag

es unmodified

browsershield

Figure 8: Memory Usage at Client

We also measured the increased network load over
a single run through the pages both with and without
BrowserShield. We measured an average increase of 9
KB, less than the standard deviation in the network load
over any individual trial due to background traffic during
our measurements. We expect BrowserShield rewriting
to only slightly increase the network load, because the
firewall just adds script wrappers, while the translation
itself happens at the client.

7 Related Work
We first compare with other protection systems in Sec-
tion 7.1. We then discuss BrowserShield’s relation to
the extensive work on code rewriting and interposition
in Section 7.2.

7.1 Remote Exploit Defense
In our prior work on Shield [43], we proposed using
vulnerability-specific filters to identify and block net-
work traffic that would exploit known software vulner-
abilities. Shield maintains protocol-specific state ma-
chines in an end-host’s network stack, allowing it to rec-
ognize when a packet will trigger a vulnerability. How-
ever, the Shield approach does not address dynamic con-
tent such as scripts in web documents, since it is undecid-
able whether script code in a document will eventually
exploit a vulnerability. BrowserShield shares Shield’s
focus on vulnerability-specific filters, but in contrast to

Shield, its use of runtime interposition allows it to han-
dle exploits in dynamic HTML.

Like BrowserShield and Shield, IntroVirt also em-
ploys vulnerability-specific predicates, specifically to de-
tect past and present intrusions using virtual machine
introspection and replay [23]. As a result, IntroVirt al-
lows “just in time” patch application: postponing the ap-
plication of a patch while an exploit has not occurred,
and rolling back system state to apply a patch if an ex-
ploit does occur. BrowserShield instead offers protec-
tion while a patch is being tested (or otherwise delayed)
by the administrator of a vulnerable system, buying time
even in cases where exploits are immediately attempted.
Additionally, BrowserShield supports more flexible de-
ployment scenarios. For example, it does not require the
client’s browser to run inside an instrumented virtual ma-
chine.

Opus [2] seeks to address the problem of patching by
allowing patches to be applied without restarting the ap-
plication. Opus provides tools for developers to increase
the reliability of such “dynamic” patches during develop-
ment. However, these tools reduce, but do not eliminate,
the programmer’s burden to produce a correct dynamic
patch.

Vigilante [7] focuses on worm containment, automati-
cally detecting and preventing the spread of worm traffic.
Vigilante combines rapid distribution of self-certifying
alerts and automatic filter generation, along with vul-
nerability detection techniques such as non-executable
pages [30] and dynamic dataflow analysis [29]. These
techniques, even with the Vigilante improvements, ad-
mit false negatives. BrowserShield does not share the
speed constraint of Vigilante, since browser exploits re-
quire human involvement and therefore do not spread on
the same time scales as worms. Therefore, we are able
to trade off the speed of automatically generated vulner-
ability filters for the accuracy of hand-coded filters.

EarlyBird [36] and Autograph [24] are two exemplary
systems that use pattern matching to block network traf-
fic containing exploits. Pattern matching scales to high
data rates, crucial to the authors’ goal of stopping worm
outbreaks at network choke points. The HTML scripts
that are BrowserShield’s focus seem difficult to detect
consistently with pattern matching, as they can trivially
modify themselves at the client.

HoneyMonkey [44] aims to discover web servers that
distribute malicious code. In HoneyMonkey, virtual ma-
chines automatically fetch content from the web and use
black-box techniques to discover exploits. Exploit dis-
covery is complimentary to BrowserShield’s approach of
providing patch-equivalent protection to clients.

Finally, a number of techniques have aimed to sandbox
the browser or other applications, in effect protecting the
operating system from the impact of an exploit. These

techniques include system call interposition [17, 18, 22]
and Microsoft’s “protected mode” for IE in Windows
Vista [20]. These may limit damage to a user’s com-
puting environment, but they do not protect the browser
itself, allowing attacks such as keylogging to easily be
conducted from exploited browsers. Tahoma [8] takes
the confinement approach one step further, sandboxing
browsers in virtual machines and using site-specific man-
ifests to restrict browser traffic to known servers. While
this could help to mitigate many browser related prob-
lems, the difficulty of getting such manifests widely
adopted is unclear.

7.2 Interposition Techniques
Interposition techniques such as code rewriting have
been used in previous work to achieve additional safety
properties or otherwise modify the behavior of existing
code. Code rewriting is only one of several alternatives
for backward compatible modifications, and the choice
of technique is influenced by tradeoffs in deployability
and performance. Directly modifying the execution envi-
ronment, such as the Java Virtual Machine, has the high-
est deployment barriers. Some work instead uses a level
of indirection, such as emulation (e.g, Bochs [6]), eas-
ing deployment but incurring a high performance over-
head. Thus, BrowserShield and others [10, 41, 42] em-
ploy code rewriting, with its low barriers to deployment
and smaller performance overhead than that required by
an emulator.

We characterize interposition techniques by the tar-
get of interposition, since the technical differences be-
tween targets require different solutions. Compared to
approaches for other interposition targets, BrowserShield
must address a new combination of technical challenges
presented by JavaScript: its scoping rules, an implicit
garbage collector, pervasive reflection, and its prototype-
based object model (which implies a lack of static typ-
ing).

Machine Code Many approaches focus on the machine
code interface, whether rewriting binary instructions or
emulating them at runtime. Software Fault Isolation
(SFI) [41] rewrites binary code to insert runtime checks,
creating sandboxes that prevent code from writing or
jumping to addresses outside its fault domain. This cre-
ates process-like memory boundaries between units of
code within a process. The more recent XFI [9] uses bi-
nary rewriting to provide flexible access control and ad-
ditional integrity guarantees. VMware ESX Server [42]
also rewrites machine code, in its case to allow programs
to be virtualized on x86 hardware. Etch [31] rewrites
machine code with the goals of profiling and measure-
ment. Valgrind [40] and Program Shepherding [25] are
dynamic binary instrumentation tools. Valgrind’s goal is

to offer debugging and profiling support, while Program
Shepherding’s goal is to monitor control flow, prevent-
ing the transfer of control to data regions which might
include malicious code.

The techniques used for rewriting at the machine
code interface do not need to address any of the four
challenges of JavaScript rewriting that have influenced
BrowserShield: scoping, reflection, garbage collection
or typing. Most work interposing at the machine code in-
terface only adds semantics that can be defined in terms
of low level operations, such as enforcing a process-like
memory boundary, as in SFI. Indeed, Erlingsson and
Schneider [11] note the difficulty of extending rewriting
at the machine code interface to enforce policies on the
abstractions internal to an application. BrowserShield’s
interposition target (the HTML document tree) is such an
application-internal abstraction.

System Call Interface Much previous work has modi-
fied user level program behavior by interposing on the
system call interface. Jones introduces a toolkit for sys-
tem call interposition agents that simplifies tasks such
as tracing, emulation, and sandboxing [22]. Wagner
et al. use system call interposition in Janus to con-
fine untrusted applications to a secure sandbox environ-
ment [18]. Garfinkel notes difficulties in trying to in-
terpose on the system call interface [16], such as violat-
ing OS semantics, side effects, and overlooking indirect
paths. Garfinkel et al. discuss a delegation-based archi-
tecture to address some of these problems [17]. Naccio
describes an approach to provide similar guarantees by
rewriting x86 code that links against the Win32 system
call interface [12]. Naccio can also rewrite Java byte-
code.

Work on the system call interface differs from
BrowserShield both in goal and in technique. System call
interposition can guard external resources from an appli-
cation, while the goal of BrowserShield is to guard an
application-internal resource, the HTML document tree.
Naccio’s use of rewriting as a technique to interpose on
the system call interface does not present any of the four
technical challenges (scoping, reflection, garbage collec-
tion or typing) relevant to JavaScript rewriting. For ex-
ample, Naccio also wraps methods to accomplish inter-
position, but Naccio’s method wrappers do not need to
handle JavaScript’s scoping rules, and so do not need to
implement swapping.

Java Bytecode Several pieces of previous work [10, 11,
37], including the previously mentioned Naccio [12],
have used rewriting at the Java Virtual Machine bytecode
interface [26]. This interface is type-safe, and provides
good support for reasoning about application-internal
abstractions. In the most similar of these works to
BrowserShield, Erlingsson’s PoET mechanism rewrites

Java bytecode to enforce security policies expressed in
the PSLang language [10].

JavaScript’s pervasive reflection, scoping rules, and
prototype-based object model forced us to develop sev-
eral techniques not needed for Java bytecode rewrit-
ing. For example, where Java bytecode rewriting can
interpose on Java’s reflection API, BrowserShield must
interpose on all property reads and writes, as well as
some for loops, to achieve similar control over reflec-
tion. Additionally, Java bytecode rewriting can achieve
complete interposition by only modifying callees (using
method wrappers) and without maintaining state, though
some previous work allowed modifying callers or adding
state to simplify policy construction [10]. In contrast,
BrowserShield must modify both callers and callees to
appropriately handle scoping and the possibility of func-
tions aliased as methods (and vice versa). Also, Browser-
Shield must maintain state, requiring careful attention to
its interaction with the JavaScript garbage collector.

Web Scripting Languages We are not aware of any
full interposition techniques for web scripting languages
like JavaScript. The SafeWeb anonymity service used
a JavaScript rewriting engine that failed to provide ei-
ther complete interposition or transparency [27]. The
Greasemonkey [19] extension to the Firefox browser al-
lows users to run additional site-specific scripts when a
document is loaded, but it does not provide complete in-
terposition between existing script code and the HTML
document tree.

8 Conclusion
Web browser vulnerabilities have become a popular vec-
tor of attacks. Filtering exploits of these vulnerabilities is
made challenging by the dynamic nature of web content.
We have presented BrowserShield, a general framework
that rewrites HTML pages and any embedded scripts to
enforce policies on run-time behavior. We have designed
BrowserShield to provide complete interposition over the
underlying resource (the HTML document tree) and to be
transparent and tamper-proof. Because BrowserShield
transforms content rather than browsers, it supports de-
ployment at clients, firewalls, or web publishers. Our
evaluation shows that adding this approach to existing
firewall and anti-virus techniques increases the fraction
of IE patches from 2005 that can be protected at the net-
work level from 12.5% to 100%, and that this protection
can be done with only moderate overhead.

We have focused on the application of vulnerability-
driven filtering in this paper, but JavaScript rewrit-
ing techniques may also enable new functionality for
AJAX (Asynchronous JavaScript and XML) applica-
tions. Some potential uses include: eliminating the effort
currently required to modify a website for the Coral [15]

CDN; modifying the cached search results returned by
web search engines to redirect links back into the cache
(since the original site may be unavailable); allowing ap-
propriately sandboxed dynamic third-party content on a
community site (such as a blog or wiki) that currently
must restrict third-party content to be static; and debug-
ging JavaScript code when attaching a debugger is in-
feasible, perhaps offering call traces or breakpoint func-
tionality for complex scripts. User interface changes
could even be added to make phishing more difficult,
e.g., enforcing the display of origin URLs on all pop-
up windows. As this list suggests, we are optimistic that
JavaScript rewriting is a widely applicable technique.

References
[1] Microsoft Security Bulletin Summaries and Webcasts, 2005.

http://www.microsoft.com/technet/security/bulletin/
summary.mspx.

[2] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz. OPUS: Online
Patches and Updates for Security. In Usenix Security, 2005.

[3] J. P. Anderson. Computer Security Technology Planning Study
Volume II. ESD-TR-73-51, Vol. II, Electronic Systems Division,
Air Force Systems Command, Hanscom Field, Bedford, MA, Oc-
tober 1972.

[4] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of Vul-
nerability: a Case Study Analysis. IEEE Computer, December
2000.

[5] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright. Timing
the Application of Security Patches for Optimal Uptime. In LISA,
2002.

[6] Bochs. http://bochs.sourceforge.net/.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-End Containment
of Internet Worms. In SOSP, 2004.

[8] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A Safety-
Oriented Platform for Web Applications. In IEEE Symposium on
Security and Privacy, 2006.

[9] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: Software guards for system address spaces. In OSDI, 2006.

[10] Ú. Erlingsson and F. B. Schneider. IRM Enforcement of Java
Stack Inspection. In IEEE Symposium on Security and Privacy,
2000.

[11] Ú. Erlingsson and F. B. Schneider. SASI Enforcement of Security
Policies: A Retrospective. In WNSP: New Security Paradigms
Workshop, 2000.

[12] D. Evans and A. Twyman. Flexible Policy-Directed Code Safety.
In IEEE Symposium on Security and Privacy, 1999.

[13] Eweek: Anti-Virus Protection for WMF Flaw, December 2005.
http://www.eweek.com/article2/0,1895,1907102,00.asp.

[14] Mozilla Security Alerts and Announcements.
http://www.mozilla.org/security/.

[15] M. J. Freedman, E. Freudenthal, and D. Mazires. Democratizing
Content Publication with Coral. In NSDI, 2004.

[16] T. Garfinkel. Traps and Pitfalls: Practical Problems in in System
Call Interposition based Security Tools. In NDSS, 2003.

[17] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A Delegat-
ing Architecture for Secure System Call Interposition. In NDSS,
2004.

[18] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A Se-
cure Environment for Untrusted Helper Applications. In Usenix
Security, 1996.

[19] Greasemonkey. http://greasemonkey.mozdev.org/.

[20] Protected Mode in Vista IE7.
http://blogs.msdn.com/ie/archive/2006/02/09/528963.aspx.

[21] ISA Server. http://www.microsoft.com/isaserver/default.mspx.

[22] M. B. Jones. Interposition Agents: Transparently Interposing
User Code at the System Interface. In SOSP, 1993.

[23] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
Past and Present Intrusions Through Vulnerability-specific Pred-
icates. In SOSP, 2005.

[24] H.-A. Kim and B. Karp. Autograph: Toward Automated, Dis-
tributed Worm Signature Detection. In Usenix Security, 2004.

[25] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execu-
tion via Program Shepherding. In Usenix Security, 2002.

[26] T. Lindholm and F. Yellin. The Java Virtual Machine Specifica-
tion, 2nd edition, 1999.

[27] D. Martin and A. Schulman. Deanonymizing Users of the
SafeWeb Anonymizing Service. In USENIX Security, 2002.

[28] Microsoft Security Bulletin MS04-040, December 2004.
http://www.microsoft.com/technet/security/Bulletin/MS04-
040.mspx.

[29] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Exploits
on Commodity Software. In NDSS, 2005.

[30] Pax. http://pax.grsecurity.net/.

[31] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy,
and B. Bershad. Instrumentation and Optimization of Win32/Intel
Executables Using Etch. In Usenix NT Workshop, 1997.

[32] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong,
J.-L. Baer, B. N. Bershad, and H. M. Levy. The Structure and
Performance of Interpreters. In ASPLOS, 1996.

[33] J. H. Saltzer and M. D. Schroeder. The Protection of Information
in Computer Systems. In SOSP, 1973.

[34] Windows Script Decoder. http://www.virtualconspiracy.com.

[35] Secure Computing. http://www.securecomputing.com/pdf/WW-
SSLscan-PO.pdf.

[36] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm
Fingerprinting. In OSDI, 2004.

[37] E. G. Sirer, R. Grimm, A. J. Gregory, and B. N. Bershad. Design
and Implementation of a Distributed Virtual Machine for Net-
worked Computers. In SOSP, 1999.

[38] The Open Source Network Intrusion Detection System.
http://www.snort.org/.

[39] D. Ungar and R. B. Smith. Self: The Power of Simplicity. In
OOPSLA, 1987.

[40] Valgrind. http://www.valgrind.org/.

[41] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient
Software-Based Fault Isolation. In SOSP, 1993.

[42] C. A. Waldspurger. Memory Resource Management in VMware
ESX Server . In OSDI, 2002.

[43] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-Driven Network Filters for Preventing Known Vul-
nerability Exploits. In SIGCOMM, 2004.

[44] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. King. Automated Web Patrol with Strider Hon-
eyMonkeys: Finding Web Sites That Exploit Browser Vulnera-
bilities. In NDSS, 2006.

