
Content-Based Isolation: Rethinking Isolation Policy
Design on Client Systems

Alexander Moshchuk
Microsoft Research
Redmond, WA, USA

alexmos@microsoft.com

Helen J. Wang
Microsoft Research
Redmond, WA, USA

helenw@microsoft.com

Yunxin Liu
Microsoft Research Asia

Beijing, China
yunliu@microsoft.com

ABSTRACT
Modern client platforms, such as iOS, Android, Windows
Phone, and Windows 8, have progressed from a per-user
isolation policy, where users are isolated but a user’s ap-
plications run in the same isolation container, to an appli-
cation isolation policy, where different applications are iso-
lated from one another. However, this is not enough because
mutually distrusting content can interfere with one another
inside a single application. For example, an attacker-crafted
image may compromise a photo editor application and steal
other images processed by the editor.

In this paper, we advocate a content-based principal
model in which the OS treats content owners as its prin-
cipals and isolates content of different owners from one an-
other. Our key contribution is to generalize the content-
based principal model from web browsers, namely, the same-
origin policy, into an isolation policy that is suitable for all
applications. The key challenge we faced is to support flex-
ible isolation granularities while remaining compatible with
the web. In this paper, we present the design, implemen-
tation, and evaluation of our prototype system that tackles
this challenge.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Web browsers; same-origin policy; isolation

1. INTRODUCTION
Much research has been devoted to isolation mecha-

nisms [38, 33, 29, 3, 53, 12, 17] to enable robust isolation
containers in operating systems. However, little research
has been done on the dual of the problem, isolation policies,
namely, “what should be put into the isolation containers”;
this is the topic of this paper. Isolation policy design is as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516722.

Figure 1: The evolution of isolation policies. Content-

based isolation provides two benefits over other policies:

(1) Any remote content’s impact is minimized (2) There

is no need to ask users to determine whether to risk

opening remote content.

critical as that of isolation mechanisms, since even with per-
fect isolation containers, an improper isolation policy can
render the system insecure.

For example, today’s Windows-based or Unix-based desk-
top PCs treat users as principals and protect user accounts
from one another. However, mutually distrusting applica-
tions of one user can interfere with one another. This is
the root cause of the significant malware problem on desk-
tops. Learning the lessons from desktops, modern client
platforms, such as iOS and Android, have refined the user-
based isolation policy to treat each application code package
as a separate principal, and different applications are run in
separate isolation containers. This isolation policy is still
too coarse because mutually distrusting content can inter-
fere with one another within the same application. Consider
the scenario where Alice opens a PowerPoint presentation
from http://alice.com/talk.ppt, which embeds a mali-
cious video from http://attacker.com/advideo.swf. The
attacker can compromise Alice’s presentation as well as other
documents being rendered by PowerPoint.

Figure 1 illustrates the evolution of isolation policies on
client platforms. In this paper, we further refine the isolate-
by-code-package policy and advocate future client platforms
to embrace a content-based isolation policy which puts ex-
ecution instances of mutually distrusting content into sep-
arate isolation containers. Content-based isolation offers a
fundamentally more secure system because any content’s im-
pact including that of malicious content is minimized to just
the content owner’s isolation container. Consequently, there
is no need to ask users to determine whether to take the risk
of opening any content. Existing applications often prompt
users (e.g., “Are you sure you want to open this document?”)

because such fine-grained containment is not available, and
risk handling is unreasonably outsourced to the user.

To some extent, the notion of a content-based prin-
cipal model exists in today’s web. All web browsers
implement the same-origin policy [41], which prevents
web content of different origins (represented by the
triple <protocol, domain, port>) from interfering with
one another. Unfortunately, these principals may un-
desirably share the same isolation container in commer-
cial browsers [49]. Recent research browsers, such as
Gazelle [49], proposed to separate web site principals into
separate isolation containers, fully achieving a content-based
principal model for the browser setting.

As modern client platforms (e.g., iOS, Android, Windows
Phone, Windows 8) and applications embrace cloud-centric
computing where documents and computing logic reside in
the cloud and are cached on client devices, applicability of
a content-based principal model goes beyond the browser
setting. Today, applications often need to process and em-
bed remote content. For example, Microsoft Office 2010 can
open remote web documents, PowerPoint 2010 allows users
to embed YouTube videos in presentations and the Google
Cloud Connect [16] plug-in allows Office to sync documents
with the cloud. Such applications are effectively becoming
browsers for their own media types, and they now face many
of the same security challenges that web browsers have faced
over the past decade, namely, isolating mutually distrusting
content from one another.

Today, content isolation is left as a responsibility of each
native application. For example, Microsoft Office 2010’s new
Protected View [30] feature provides a sandboxed read-only
mode for documents originating from the Internet and users
have to explicitly “enable editing” to remove the sandbox
and its restrictions at their own risk. Adobe Reader re-
cently introduced a similar sandboxing feature [1]. Letting
each application handle content protection has serious draw-
backs. First, security of a user’s cloud data is duplicated
and entrusted to all of the user’s applications. Attackers
need only find one badly-written application and target it
to exploit all content (at the web scale) that this applica-
tion renders. Second, security logic in applications is often
mixed with error-prone content processing logic; content iso-
lation vulnerabilities are discovered not only in browsers and
plug-ins [18, 49, 2], but also in desktop applications. For
example, the recent RSA SecurID token compromise [36]
that affected 20,000 RSA’s enterprise customers was caused
by a maliciously crafted Excel email attachment, and from
2008-2011, 88% (224) of Microsoft Office vulnerabilities are
content parsing flaws exploitable by maliciously crafted doc-
uments [34]. Worse, many desktop applications do not offer
any isolation for certain remote content. For example, Pow-
erPoint 2010 renders embedded remote videos in the same
process and makes no attempt to isolate them, letting po-
tential Flash vulnerabilities endanger the PowerPoint appli-
cation and its documents. Overall, users must endure weak
and inconsistent security of applications that process their
cloud-backed data.

In this work, we let the OS take over the burden of content
isolation from applications. By consolidating content isola-
tion logic in the OS, we reduce the trusted computing base
from trusting many applications’ isolation logic to trusting
just that of the OS. The main contribution of this paper is
a general content-based principal model suitable for all ap-

plications beyond just browsers. Our design goals are: (1)
flexible isolation, from the granularity of a single address-
able document to documents hosted at multiple domains,
(2) compatibility with browsers’ isolation policy so that at-
tackers cannot violate browser security from non-browser
applications and vice versa, and (3) easy adaptation of na-
tive applications.

We present a design that achieves these goals and de-
scribe our prototype system called ServiceOS, implemented
as a reference monitor between the kernel and applications
in Windows. We demonstrate that ServiceOS is practical
by successfully adapting several large applications, such as
Microsoft Word, Outlook, and Internet Explorer, onto Ser-
viceOS with a relatively small amount of effort. Our evalu-
ation shows that ServiceOS eliminates a large percentage of
existing security vulnerabilities by design and has acceptable
overhead. We also demonstrate how ServiceOS contains two
working exploits.

In the rest of this paper, we describe our threat model in
Section 2 and our system model in Section 3. We define our
system’s principals in Section 4 and show how to enforce
principal definitions in Section 5. We present ServiceOS’s
implementation in Section 6, and evaluate ServiceOS and
the effort to adapt several native applications in Section 7.
We discuss related work in Section 8 and conclude in Sec-
tion 9.

2. THREAT MODEL
The primary attacker against which our system defends

is the content owner attacker. Like the web attacker [23],
the content owner attacker controls content server(s) serving
malicious data that exploits vulnerabilities. Users may be
enticed to access such malicious content from e-mail spam,
malvertising, or phishing. The goal of ServiceOS is to min-
imize the impact of any malicious content by designing the
right isolation policy and enforcement mechanisms. Our
trusted computing base is the ServiceOS kernel.

We leave it up to content owners to consider network at-
tackers, who may compromise content integrity and confi-
dentiality. A content owner who is worried about network
attackers should employ end-to-end secure channels (such as
TLS) for content transport.

We are also not concerned about attackers that target spe-
cific content owners, such as cross-site scripting or cross-site
request forgery attacks. These are fundamentally content-
specific vulnerabilities which only content owners can fun-
damentally fix.

3. SYSTEM MODEL
A principal is the unit of isolation. Program execution

instances with different principal labels are isolated in sepa-
rate isolation containers. We refer to an execution instance
with a principal label as a principal instance (PI).

In ServiceOS, each principal has its own local store. A user
may use a certain online storage service, such as Dropbox or
Google Drive. We assume that all user-downloaded content
is stored on such services. This is quickly becoming the
norm with modern OSes, with integrations of ChromeOS
and Google Drive, Windows 8 and SkyDrive, and OS X and
iCloud.

There is no sharing across principals or isolation contain-
ers (i.e., no global file systems unlike today’s desktop sys-

Figure 2: Execution instance as a content processing

stack.

tems) except through explicit cross-principal communication
system APIs, analogous to IPC.

We have adopted user-driven access control [40] to allow
users to share data across isolation boundaries. This is done
through authentic user actions on trusted UIs (e.g., mouse
clicks on a copy button, “save-as” button, or a file picker UI)
or gestures like drag-and-drop or Ctrl-V. User-driven ac-
cess control enables capability-based, least-privilege access,
driven by users’ natural interactions with applications and
the system. We will not discuss it further in this paper and
refer interested readers to [40].

For example, Microsoft Word would have its own local
store on ServiceOS. A user may launch Word and start
editing a new document. The document is auto-saved into
Word’s own local store. When the user wants to save the
document to her Dropbox store (across the isolation bound-
ary), the user clicks on a trusted “save as” button embed-
ded in Word. The click brings up a trusted file picker win-
dow. The user then selects Dropbox, specifies the file name,
and clicks on the “save” button (also part of the trusted file
picker). The system only allows Word to write to a user-
specified Dropbox path, but not other parts of Dropbox or
other online stores, achieving least-privilege access.

ServiceOS allows a user to have a local store, such as photo
or music libraries. We label all content in the user’s local
store as the principal “local”, separate from all other princi-
pals. User-driven access control is the means for the user to
get content in or out of the local store.

4. DEFINING PRINCIPALS
An isolation policy design needs to answer two questions:

(1) how execution instances should be labeled, or what defines
a principal, (2) how remote content is fetched and dispatched
into each principal to comply with the principal definition.
This section presents our design for the former and the next
section addresses the latter.

4.1 Execution instance as a content
processing stack

Before presenting our design on labeling execution in-
stances, we first illustrate what constitutes an execution in-
stance.

An execution instance may involve content from differ-
ent owners. Figure 2 illustrates such an example: a doc-
ument is rendered by a Java editor application which runs
on a Java Virtual Machine (JVM) which in turn is a Win32
program running on Windows. The document, editor, and
JVM may belong to different owners: e.g., the document
may belong to alice.com, editor to editor.com, and JVM
to oracle.com. Therefore, we characterize an execution in-
stance as a content-processing stack. Each layer of the stack
consists of content that is owned by some entity and that

needs to be addressable (for example, a web document is
addressable with a URL, but user input data is not address-
able). The content at a layer is consumed and processed
by the next lower layer. We refer to layers below the top
layer as content processors. For example, plug-ins in today’s
browsers are treated as content processors in our system.

We do not treat static data content as safer than active
code content or content processors, because we want to al-
low both type-safe and native applications on our system
(as is the case for most real-world client systems). Since
maliciously-crafted static data can be turned into code by
exploiting memory errors in native applications, we treat
code and data as equally-capable content.

The content-to-processor mapping (e.g., mapping al-
ice.com’s document content to the editor) can be configured
by the content owner (alice.com) or by the user. Today’s web
servers indicate content’s MIME type using the Content-

Type header in HTTP responses. Desktop applications can
use the same mechanism to convey content types. Addition-
ally, we propose a new Content-Processor HTTP header
to allow content servers to specify desired content proces-
sors by a URL or unique ID. For example, a web server
serving photo.jpg could send:

Content-Processor: “http://www.photoedit.com/editor.app”

The content owner can sign this mapping with its private
key. Users or the OS vendor can configure default content
processors.

4.2 Principal labeling and isolation policies
The labels of content processing stacks ultimately deter-

mine the isolation policy of the system. Content processing
stacks with the same label belong to the same principal and
isolation container. We establish three goals for the princi-
pal labeling design.

1. Enable isolation policies of arbitrary granularities for
URL-addressable resources (a file at a URL rather than
an internal object in a file). The most fine-grained
principal can be a single document. However, a fixed
policy like this can be unnecessary and can impede
functionality: some documents may not be mutually
distrusting and may have complex cross-document in-
teractions. For example, a Microsoft Word document
may interact with an Excel document by referencing
its data cells or charts. So, we need a flexible mecha-
nism to group documents into a single principal.

2. Separate content owning from content hosting so that a
content owner can get its content hosted anywhere and
be treated as belonging to the same principal. Suppose
Alice created a number of documents or photos and
uploaded them to various online storage services (e.g.,
Dropbox) or photo sharing services (e.g., Google’s Pi-
casaweb). We would want to associate all this content
with the same owner Alice regardless of where it is
hosted. This goal is especially important for desktop
applications where users often create content locally
and then make a separate decision on where to host
it. This is unlike web applications, where content is
usually tightly associated with its host.

3. Be compatible with web browsers’ isolation policy. To-
day’s web browsers’ isolation policy is the same-origin
policy (SOP) [41] which treats web sites as mutu-

ally distrusting principals, labeled with web site ori-
gins, a triple of <protocol, domain, port> [48]. Web
sites can create subdomains to have finer-grained prin-
cipals (e.g., user1.socialnet.com, user2.socialnet.com).
SOP itself does not meet the above two goals that we
set for principal labeling. For example, youtube.com
and google.com belong to Google, but cannot be
configured to belong to the same principal. SOP
also does not support finer-grained isolation at path
or URL level: https://www.facebook.com/user1 and
https://www.facebook.com/user2 cannot be config-
ured to be different principals.

Our goal of being compatible with SOP is due to two
reasons. First, it is undecidable for an OS to deter-
mine whether an application is a web browser. Even
non-browser applications may use core browser com-
ponents; for example, Microsoft .NET provides a web
browser control which allows any .NET application
to use browser functionality; similarly, iOS and An-
droid also allow browser components to be included
in applications. Second, even if an OS could tell the
difference, it is still desirable for browsers and non-
browser applications to have the same principal model
because an attacker could cause browsers to render
non-browser content and vice versa. Then, applica-
tions with coarser-grained isolation can be used to un-
dermine finer-grained isolation in other applications.
For example, modern OSes like iOS and Android iso-
late by application package (see Section 1), which is
coarser-grained than browsers’ same-origin policy. An
application running on such OSes can access two web
sites from different origins and have them coexist in the
same isolation container, not meeting the web sites’
expectation of being isolated from one another per
same-origin policy. Therefore, we aim to design a web-
compatible principal model.

4.2.1 Public key as owner ID
To achieve these goals, we propose a public-key-based

owner ID. Each URL-addressable content is tagged with
its owner’s public key and a signature that signs the host
URL. This signature indicates that the signed host URL
points to a resource owned by the owner of the public key.
We introduce a new HTTP response header for this purpose:

Owner: publicKey=<key>; hostURLSig=signed(responseURL)

Content owners need to trust hosts to specify this header
correctly and this can be easily checked by the owners. Note
that ensuring content integrity and confidentiality are or-
thogonal features that owners and hosts can collaborate on
and enable in addition to principal definition specification.

A content processing stack is then labeled with a stack
of public key labels, which we refer to as the owner stack.
ServiceOS treats execution instances with the same owner
stack as the same principal.

Since legacy web sites do not use our Owner header for
principal definition, our system, by default, labels an exe-
cution instance with the origin stack of its content process-
ing stack, capturing the origin of the content at each layer.
This default gives the same isolation semantics as today’s
browsers: different browser vendors are content processors of
different origins, and they isolate an origin’s resources (e.g.,

Figure 3: The origin stack as the default principal label.

cookies, cache, local storage) from other origins in ServiceOS
as well as in today’s systems.

If an Owner header is present for public key-based princi-
pal definition, then our system overrides the origin label with
the public key value. Figure 3 shows six execution instances
(or content processing stacks) and their corresponding isola-
tion containers with the appropriate principal labels in the
form of the origin stack1. Note that traditional browser plu-
gins like Adobe Flash and browser renderers are treated as
content processors.

Note that our owner ID design is different from locked
same-origin policy [25] which uses content host’s X.509 cer-
tificates as principal labels for HTTPS origins. That scheme
still ties the principal definition with the host. This design
also differs from YURL [8] where YURL puts the host’s
public key as part of the URL, which also ties hosting with
owning.

4.2.2 Augmenting SOP with Trust Lists
Although an owner ID offers both arbitrary isolation gran-

ularity and independence from hosts, some application de-
velopers will find it cumbersome to maintain a key pair and
to compute signatures for each URL, and will resort to using
the same-origin policy. For these developers, we introduce a
“trust list” mechanism to augment SOP and to allow arbi-
trary isolation granularities (achieving Goal 1), but without
the independence from hosts (not achieving Goal 2).

A content server can associate a trust list with any URL
resource R at the server. The trust list contains a set of
URLs with which R trusts to coexist in the same isolation
container. This is one-way trust, meaning that R trusting
to coexist with S does not mean that S trusts to coexist
with R. Two resources from two different URLs can live in
the same isolation container if and only if they have mutual
trust. A resource R is allowed to be admitted to an isolation
container if and only if all existing resources in the container
trust to coexist with R, and R trusts to coexist with each of
the existing resources.

For resources sent over HTTP, we propose a new HTTP
response header called Trust to allow specifying a trust list.
The value can be either a URL of the trust list or the trust
list itself. We allow the wildcard “*” at the end of a URL
for enumerating all resources at a path. We disallow wild-
cards for domains so that developers will not accidentally

1We omitted protocol schemes in the origins to save space,
but they should be part of the origin label.

Algorithm 1 : Can the resource at URL u with a trust
list be admitted to an isolation container with an effec-
tive label stack C? If IsSamePrincipal(C, u) returns true,
then ServiceOS admits u into C.

1: function IsSamePrincipal (C, u) {
2: us1 = C.TopLayerUrls();
3: us2 = {u};
4: repeat
5: if (not MutuallyTrusted (us1, us2))
6: return false
7: us1 = us1.processors
8: us2 = us2.processors
9: until (us2.processors == null)

10: UpdateContainerLabelWithNewURL (C, u)
11: return true
12:
13: function MutuallyTrusted(URLSet1, URLSet2) {
14: foreach u1 in URLSet1
15: foreach u2 in URLSet2
16: if (u1 /∈ u2.TrustList or u2 /∈ u1.TrustList)
17: return false
18: return true

cluster mutually distrusting domains into a single principal.
When the Trust header is missing, ServiceOS resorts back
to the default, using the content server’s origin to label the
returned resource. For resources sent over non-HTTP pro-
tocols, we resort to the default SOP where we use the ap-
plication as the scheme and the IP address as the domain.
We expect this to be a rare case as existing trends indicate
that nearly all communication happens over HTTP [37].

The default SOP principal model is equivalent to all re-
sources from an origin indicating a trust list of just its origin
followed by a “*”.

The trust list mechanism can be used to real-
ize coarser-grained or finer-grained2 principals than
that of SOP. For example, if youtube.com and
google.com want to belong to the same principal,
then google.com’s server needs to provide the header
“Trust:list=http://youtube.com/” and youtube.com

needs to provide “Trust:list=http://google.com/”.
Consider an example of using the Trust header

to achieve a fine-grained principal definition. A re-
source, say at http://blog.com/alice/index.html, spec-
ifies: Trust:list=http://blog.com/alice/*, expressing
that the resource at the URL trusts to share the container
with all other content from the path corresponding to Alice.
If other resources at the path also indicate the same header,
then this achieves path-based principal isolation. Note that
only explicitly specified URLs are trusted. In this example,
the resource from http://blog.com/ is not trusted. Sim-
ilarly, individual document URLs can also be put into the
Trust header to achieve document-level granularity of isola-
tion.

ServiceOS enforces the Trust header as follows. At any
time, ServiceOS maintains a stack of effective labels for the

2Jackson et al [24] warned against using more fine-grained
principal definitions than an origin and claimed that the
isolation boundary can break down due to (1) a malicious
library being included or (2) data export (e.g., form submis-
sion) being manipulated to send to attacker URLs. These
two problems can also happen to the origin principal model
and are not specific to finer-grained principals.

Figure 4: Non-transitivity in Trust. Although the trust

lists show that a and b are mutually trusting and b and c

are mutually trusting, transitive trust does not follow: a

and c do not trust each other (as desired by their trust

list specification) and will never share an isolation con-

tainer.

content processing stacks (CPS) in an isolation container.
The effective label of layer L is the set of URLs of resources
at layer L of all content processing stacks. Given an isola-
tion container with an effective label stack C and and an
HTTP response for a resource at URL u with a trust list,
ServiceOS determines whether u should be treated as the
same principal as C and be admitted to the container with
Algorithm 1: ServiceOS iterates over u and its lower con-
tent processor layers and checks whether they are mutually
trusted with each layer of the effective label stack C of the
isolation container. If all layers of u mutually trust corre-
sponding layers in C, u can be admitted to the container C.
In that case, C incorporates u’s and its content processors’
labels into its own.

A interesting and desirable property of trust list is its
non-transitivity: given that a and b are mutually trusted
and b and c are mutually trusted, it does not follow that a
and c are mutually trusted and can share the same isolation
container. Figure 4 illustrates this property.

A content server can easily manage trust lists by desig-
nating a URL to contain the list and having each resource
in the list use a Trust:url=<policyurl> header. The list
(principal definition) can then be evolved without changing
each resource’s Trust header value.

To simplify ServiceOS logic and content server tasks, we
do not mix the trust-list-based principal definition with
the public-key owner principal definition. A content server
should pick one to use. When both headers are present, Ser-
viceOS uses the Owner header and ignores the Trust header.

Note that Trust and Owner are applicable to only isolated
content [48] (e.g., a standalone program, HTML program
from a web site) whose principal label is the owner of the
isolated content. These headers are not applicable to library
content [48], such as JavaScript included via a <script>
tag or other libraries which do not have their own princi-
pal identity, but are designed to be included by standalone
programs.

We advocate both modern client platforms (e.g., iOS, An-
droid, Windows 8) and web browsers (and web standards)
to move towards such a flexible, unified principal model.

4.2.3 Coexistence with legacy browsers
If web servers use our Trust and Owner headers to config-

ure principal definitions, their developers need to consider
their behavior on legacy browsers.

If a principal definition is coarser-grained than an origin, a
site can encounter functionality loss because legacy browsers
would deny legitimate cross-origin interactions permitted by

alice.com/tax.doc

Fetch
bank.com/tax.macro

bank.com

HTTP request for bank.com/tax.macro:
 Origin: alice.com/tax.doc
 Dispatch-bit: data-communication

yes no
HTTP Response with tax.macro data
 Dispatch-bit-understood: true

HTTP Error

Requester PI ServiceOS Responder server

HTTP Response with tax.macro data
 Dispatch-bit: data-communication

HTTP Response with tax.macro data
 Dispatch-bit: spawn-new-principal

Error
(destination is alice.com

and not bank.com)

tax.macro data

Error

(a)
Requester
specifies

dispatch bit

alice.com/tax.doc

Fetch
bank.com/tax.macro

bank.com

HTTP request for bank.com/tax.macro:
 Origin: alice.com/tax.doc

yes

Requester PI ServiceOS Responder server

tax.macro data

Check if
destination PI
is bank.com

Can alice.com spawn
a new bank.com PI

with tax.macro?

no

yes

no

HTTP Error Error

(b)
Responder

specifies
dispatch bit

Can alice.com
access tax.macro?

Can alice.com
access tax.macro?

Figure 5: Two design choices for specifying the dispatch bit. Here, a Word application rendering a document from

alice.com attempts to retrieve a helper macro from bank.com, to be used in the alice.com principal instance.

the principal definition. The site would need additional
cross-origin communication code to maintain compatibility.

If a principal definition is finer-grained than an ori-
gin, then the site may lose expected isolation on legacy
browsers. Security-sensitive web sites may just resort
to the origin principal model to implement their isola-
tion policies and to avoid two implementations (one for
legacy browsers and one for new systems) until all ma-
jor browsers adopt our proposal. Nevertheless, web sites
that want to use finer-grained isolation but are not yet
able to do so (e.g., https://www.facebook.com/user1 and
https://www.facebook.com/user2 may want to be treated
as different principals) may happily embrace the new head-
ers and be safer on ServiceOS-capable systems.

5. ENFORCING PRINCIPAL
DEFINITIONS

Central to enforcing our content-based principal defini-
tions is how remote content is fetched from the network and
to which principal instance (and isolation container) the re-
turned content should be dispatched. Note that this enforce-
ment mechanism is needed in addition to having a robust
isolation container. In this section, we describe this fetch-
ing and dispatching logic and how it ensures that principal
definitions are obeyed.

The dispatch decision is trivial when a Principal Instance
(PI) of a requester principal fetches a remote resource of
the same principal. We simply dispatch the returned re-
source to the requester PI. Determining whether a remote
resource belongs to the same principal as the requester is
done through the IsSamePrincipal check in Algorithm 1 if
the resource’s principal definition is based on a trust list,
through public key stack comparision if an owner-ID-based
principal definition is used, or through origin stack com-
parison if neither trust lists nor owner-based definitions are
provided (Section 4).

More care is needed for cross-principal content fetch,
namely, when the requester fetches content from the server
of a different principal. Such a request can happen for two
reasons: (1) Data communication: the requester wants some

data from the responder server and the returned data should
be dispatched to the requester principal instance; or (2)
Spawning a new principal: the requester wants to spawn a
new instance of the responder principal, for example if a user
clicked on a hyperlink to open a new document, or a docu-
ment of the requester principal embeds a resource from the
responder principal; in this case, the returned data should be
dispatched to the responder principal instance rather than
that of the requester.

Because the requester can be malicious, we must ensure
that our content fetch and dispatch logic can properly pro-
tect and isolate the responder principal from an attacking
requester even in the face of arbitrary system API (ab)use.

The key idea in our design is to use a dispatch bit in either
the request or the response to differentiate the two cross-
principal content fetching scenarios.

There are two design choices of specifying this bit, illus-
trated in Figure 5. First, ServiceOS can specify the bit in the
outgoing request to the responder server to convey whether
the returned data will be dispatched to the requester PI or a
(new) responder PI. Then, the server makes an access con-
trol decision for the request, and ServiceOS forwards the
response to the requester PI. Second, the responder server
(with knowledge of requester’s label) can specify the bit in its
response to ServiceOS to indicate whether the data is autho-
rized to be dispatched to the requester PI or to a responder
PI. Then, ServiceOS enforces the bit and either dispatches
or discards the returned data. In both design choices, the
request needs to contain the principal label of the requester,
which we include using the HTTP Origin header [4].

Both designs can support legacy servers as follows. If the
bit lives in the response, its absence tells ServiceOS that this
is a legacy server. If the bit lives in the request, then the
response needs to declare that the bit was understood; the
absence of that declaration tells ServiceOS this is a legacy
server. For legacy servers, ServiceOS will deliver the data
to the responder PI to be compatible with browsers’ same-
origin policy.

The advantage of putting the bit in the request is that
it lets the server optimize away a response that is destined
to be dropped and return an error instead. The advan-

ServiceOS API Examples of desktop application
functions (e.g., for Word)

Examples of browser functions

CreatePI(URL, postData) Open remote Word file Enter URL into address bar, navigate to a link

Fetch(URL, postData) Retrieve required resources for a doc-
ument, such as templates, macros, or
images

Same-origin <iframe>, <script>, <style>, orig-
inal XMLHTTPRequest

Embed(URL, windowSpec, postData) Embed remote images, spreadsheets,
or videos

Cross-origin <iframe>, <object>, <embed>,

Table 1: Core ServiceOS APIs

tage of putting the bit in the response is that it can be
statically configured for each URL, rather than having the
server perform access control checks for each request. There-
fore, we advocate supporting the bit in both requests and
responses to allow responder servers to get both advantages
if desired: a diligent server can perform access control on
each request and reduce network overhead (and indicate the
server’s knowledge of the dispatch bit in the request), and a
lazy server can just statically configure its URLs when pos-
sible. When the dispatch bit from the response differs from
that of request, the response’s dispatch bit takes precedence.

Because HTTP has become the narrow waist of all com-
munications [37], ServiceOS exposes system APIs for HTTP-
based content fetch, and we indicate the dispatch bit with
HTTP headers (Section 6). For application-level protocols
other than HTTP, it is impossible (and undesirable) for Ser-
viceOS to know their semantics and parse out their respec-
tive dispatch bits (even if they implement them). So, in the
absence of dispatch bits, our system resorts to the default
of returning the data to a responder PI only. With this
default, applications that use peer-to-peer communication
require modifications to run on ServiceOS. They must rely
on explicit client-side cross-principal IPC to achieve peer-
to-peer data transfer. For example, if a requester wants
to retrieve data from the server of a responder principal
with a non-HTTP P2P protocol, then the requester can
first launch the responder’s client-side PI through our system
API CreatePI(responderClientCodeURL); the new respon-
der PI then retrieves the data and then passes it on to the
requester PI.

Backward compatibility with existing web sites.
To maintain web compatibility, ServiceOS supports MIME-
type-based content dispatch as in Gazelle [49], translating
MIME types in responses into dispatch bits in responses.
We also support cookies and cross-site client-server commu-
nication primitives XMLHttpRequest Level 2 [52] and XDo-
mainRequest [28], along with the associated CORS consent
protocol [46]. Despite the availability of cookies, we strongly
advocate native applications not to use the cookie mecha-
nism, but to explicitly include their state (such as user pref-
erences and authentication state) in their data requests to
reduce the chance of cross-site request forgery (CSRF) at-
tacks [5].

6. IMPLEMENTATION
We have implemented a prototype of ServiceOS on Win-

dows 7 as a reference monitor between the OS and appli-
cations. Our implementation is in C# using .NET 3.5 and
has two major components: the ServiceOS monitor and the
system shell.

The monitor consists of 9.4k lines of code. It communi-
cates with principal instances using ServiceOS system calls
and upcalls, which are implemented as asynchronous XML-

based messages sent over named pipes. The monitor creates
a unique named pipe for each principal instance to issue
system calls and receive upcalls.

The system shell consists of 3.6k lines of code. It provides
a tab-based UI for users to enter URLs to visit web sites,
view content rendered by native applications, or open stan-
dalone applications. The UI passes a newly typed URL to
the monitor, which fetches the content, picks a content pro-
cessor, and admits this content processing stack into the
right isolation container, following the semantics of Sec-
tions 4 and 5.

Isolation mechanisms. We adopted Drawbridge [38]
as our main sandboxing mechanism. Drawbridge can run
unmodified Windows applications in a highly isolated mode
by refactoring Windows into a library OS and virtualizing
all high-level OS components, such as windowing libraries,
files, or registry. Drawbridge exposes a very narrow base
API for allocating virtual memory, threading, synchroniza-
tion, and generic stream-based I/O (e.g., to access files that
are part of an application). To protect our security policy,
ServiceOS instructs Drawbridge to restrict I/O calls to only
allow access to files that are part of the current principal’s
private storage, and to disallow pipe access other than to
communicate with the ServiceOS monitor.

With Drawbridge, we are theoretically able to support
all user-space-only Windows applications on our system,
though in practice, Drawbridge is not yet mature enough
to support certain application features (such as DLLs nec-
essary to run macros in Office documents).

Note that our system design is independent of specific iso-
lation mechanisms like Drawbridge. As proof, we added sup-
port for another sandboxing mechanism, which associates
each principal with a separate, restricted user account, and
runs applications in processes using these restricted UIDs.
This allows greater application compatibility than is cur-
rently possible with Drawbridge, but it is not as secure: it
has a much wider API surface, and UIDs alone do not form
a security boundary in Windows (e.g., one could execute
shatter attacks [43] based on window messages across UID
boundaries).

To complete the system, our monitor augments APIs ex-
posed by our isolation containers with a few higher-level
APIs, which we discuss next.

Core ServiceOS system calls. There are three core
system calls that we support: Fetch, CreatePI, and Embed.
Table 1 shows examples of how applications may utilize these
APIs. Fetch is used for data communications, and we imple-
mented both synchronous and asynchronous versions. The
other two calls are for creating new principal instances: Cre-
atePI(newUrl) launches a new PI with a standalone UI (in a
new tab), and Embed(newUrl, <window specs>) launches a
new PI and embeds its UI window into the caller’s UI. For all
three calls, ServiceOS makes HTTP requests using .NET’s

built-in WebRequest classes. ServiceOS uses custom imple-
mentations of a cookie database and authentication man-
ager. We implemented support for both Owner and Trust

headers (Section 4), as well as Algorithm 1 for admitting
resources to isolation containers.

For principal definition enforcement, we have imple-
mented the design choice of having the dispatch bit in the
HTTP response since this is the case where ServiceOS has
to do additional enforcement work. We added a new di-
rective name “dispatch-to” in the existing CSP [11] HTTP
header with two possible values, ’requester’ or ’responder’.
If a server wants the returned data to be dispatched to a re-
sponder PI, then it specifies in its response header: Content-
Security-Policy: dispatch-to ’responder’. The Ser-
viceOS monitor checks for the directive in the HTTP re-
sponse for each HTTP response and performs dispatching
accordingly.

Display management. Our monitor controls window
positioning, dimensions, transparency, and overlaying poli-
cies but is independent to the UI primitives available on the
host OS. It communicates display policies to the UI, which
implements application windows using .NET Forms. Sand-
boxed Drawbridge applications run an internal RDP [31]
server to expose visual output and forward user input. Our
UI implements ActiveX RDP clients, which the ServiceOS
monitor connects to the corresponding applications’ RDP
servers. When running with no isolation or with UID-based
isolation, ServiceOS relies on the Windows SetParent API
call to attach applications’ UI into our shell UI and to im-
plement Embed().

Packaging content processors. Content processors
and standalone applications are packaged and delivered as
an archive file with extension .app, which our monitor de-
compresses and executes as a new isolated process. These
packages carry a manifest file containing information like
the content processor’s unique ID, main executable to run,
or handled content types. Web servers may allow content
processors to be cached using standard HTTP headers; we
rely on this as a rudimentary update mechanism and leave
more elaborate, finer-grained schemes (such as [9]) as future
work.

6.1 Adapting native applications
To run on ServiceOS, an application must connect to the

ServiceOS monitor, register its display output with Ser-
viceOS’s UI, and use ServiceOS calls for fetching and dis-
patching content.

Some of these requirements can be handled transparently
to applications. In particular, we provide a wrapper program
to connect a given application to the ServiceOS monitor over
a named pipe and to register its main window’s visual out-
put. As well, we observe that many Windows applications
use the WinInet [32] library for HTTP communication. To
ease porting for such applications, we used public WinInet
API documentation [32] to implement an alternate version
of wininet.dll, which remaps its HTTP calls to invoke Ser-
viceOS’s Fetch() call. We then force our applications to use
this DLL. We similarly remap the Windows socket library,
ws2_32.dll, onto a raw socket API provided by ServiceOS
to support non-HTTP transport. Applications that do not
use these libraries for communication will require porting to
use our APIs, but we expect this to be rare: we examined

50 popular Windows applications, and found that all except
Firefox used WinInet for HTTP communication.

This wrapping is enough to run applications that do not
fetch remote content or fetch remote content that does not
need protection. As examples, we have packaged Calcu-
lator and Solitaire to run on ServiceOS. These applica-
tions can be executed simply by browsing to a URL like
http://games.com/solitaire.app in ServiceOS’s UI.

Unlike display setup and content fetch, we cannot auto-
matically infer when to use the CreatePI() and Embed()

calls to render remote content. This functionality is closely
tied to application semantics and requires applications to be
modified to use them. To facilitate this effort, we created
a library called LibServiceOS which, similarly to libc, han-
dles all communication details between an application and
ServiceOS. It exposes ServiceOS system calls and provides
an upcall interface for applications to implement. We im-
plemented both a C++ version of LibServiceOS for native
applications and a type-safe, C# version for .NET appli-
cations. In Section 7.1, we evaluate the ease of ServiceOS
adaptation for several large real-world applications.

7. EVALUATION
To evaluate ServiceOS, this section answers and discusses

four main questions: (1) how easy is it to adapt native ap-
plications to run on ServiceOS, (2) by how much does min-
imizing impact of malicious content improve security of the
system, (3) can ServiceOS stop real exploits, and (4) is our
prototype’s performance acceptable?

7.1 Ease of adapting native applications
Recall from Section 6.1 that we need to manually adapt

only applications that need to spawn a new principal with
CreatePI() (e.g., to support users clicking on a URL) or
Embed() (e.g., to support embedding a video clip belonging
to a different principal). In this section, we describe our
adapation experience for several large, real-world Windows
applications. Overall, we find the adaptation effort to be
moderate.

7.1.1 Microsoft Word and Excel 2010
Microsoft Word is increasingly used to obtain, read, and

edit remote documents. We had two goals in adapting Word:
(1) isolate documents according to their content owners, and
(2) allow documents to safely embed untrusted remote con-
tent, such as YouTube videos. Office 2010 exposes a rich
add-in interface [39] which we used for all our modifications,
thus avoiding the need to access Word and Excel source
code.

Our add-in ensures that every opened document is routed
to an appropriate Word instance using CreatePI(), and it
extends Word’s hyperlink class, which is used to embed links
in documents, to enable an iframe-like embedding model,
allowing users to embed a frame pointing to a remote web
page or object. On Word’s “document open” event, our add-
in scans the document for these special hyperlinks, extracts
information such as frame’s URL, position, and dimensions,
and calls Embed() accordingly. In response, ServiceOS will
fetch corresponding remote content, dispatch it to a prop-
erly isolated principal instance, and connect the rendered
content’s visual output into its UI container in the Word
document. As an example, we have used our add-in to se-
curely embed video clips from YouTube, playable right from

the containing Word document — functionality that has so
far been unavailable in Word.

Our Word add-in consists of only 223 lines of C# code and
took about one man-day to write after getting familiar with
Word’s add-in APIs. As a separate exercise, we have ported
the plug-in to Excel 2010 to provide the same functionality.
This took only 2 man-hours and resulted in a 227-line Excel
add-in.

Each Word or Excel principal instance has its own UI
with all menu items, most of which perform functions on the
underlying document and continue to work on ServiceOS.
Some functions, such as document comparison or merge, will
not work if the involved documents are owned by different
principals3. Although we have not yet done so, such features
can be enabled via explicit ServiceOS-mediated IPC between
different instances of Word.

7.1.2 Wordpad
Wordpad is a sophisticated text editor. We pick it as

a case study of porting via source code modification, since
unlike Word, Wordpad is not modularized and does not pro-
vide plug-in interfaces. It consists of more than 50k lines of
C++ code, and we consider it representative of reasonably
complex applications.

We extended Wordpad with the same ServiceOS support
as for Word and Excel. For example, we modified the docu-
ment parser to recognize special objects representing remote
content and to call Embed(), and we modified UI code to
make room for embedded content frames when rendering the
document. With no prior knowledge of Wordpad, this effort
took about 50 hours for one author, with most of it spent on
understanding the source code. In total, we added only 435
lines of C++ code, and we expect that Wordpad develop-
ers could make these changes much more quickly. Overall,
our experience showed that adaptation onto ServiceOS is
feasible even when source code modification is required.

7.1.3 Internet Explorer
As our primary browser renderer, we have ported Mi-

crosoft Internet Explorer’s Trident rendering engine to use
our new system APIs. This effort closely mirrors the imple-
mentation of the Gazelle browser [49], so we omit further
details here. In summary, we changed Trident to use Ser-
viceOS system calls (see Table 1) using public IE COM inter-
faces, and by doing so, we forced Trident to use ServiceOS’s
isolation policies instead of IE’s. This could impact web
compatibility. While this merits further investigation, re-
cent work showed that an architecture like ours should have
little or no compatibility hit [44].

7.1.4 Microsoft Outlook 2010
Microsoft Outlook 2010 is a popular e-mail and personal

information management application. Outlook needs to iso-
late untrusted content in e-mail messages, but unlike Word
documents or web pages, e-mail messages are not address-
able via URLs. For such content, applications can still use
our Embed() call to conveniently offload content isolation
while still rendering it in-place with the rest of application’s
UI. We follow this approach and extend Outlook to use Em-

bed() to render e-mail messages in-place as before, but in

3Note that is an example of a future problem that never
actually occurs in Office today.

Content processing
Total (prevented in ServiceOS)

Microsoft Office 256 224 (88%)
Adobe Reader 202 64 (83% of known∗)
Internet Explorer 144 122 (85%)

Table 2: Security analysis of vulnerabilities (’08-’11).
∗ We could not analyze 125 Adobe vulnerabilities with unspecified

attack vectors.

a separate protection domain, using our IE renderer (Sec-
tion 7.1.3). Because ServiceOS cannot determine such con-
tent’s owner information or even retrieve it, we let Outlook
download message bodies and provide them directly to Em-

bed (via “data:” URLs); ServiceOS uses uniquely-labeled
containers in such cases.

Outlook’s own protection mechanisms for restricting e-
mail rendering, such as filters for <script>, <iframe>,
and other dangerous tags, have been error-prone: two re-
cent patches fixed 15 vulnerabilities that, in most severe
cases, allowed attackers to take control of a system when a
victim simply viewed a specially-crafted e-mail [34]. With
ServiceOS, Outlook gains stronger isolation from e-mail ren-
dering bugs, while e-mail content can benefit from additional
functionality provided by IE, such as scripts and embeddable
iframes.

We also extended Outlook to safely preview attachments
using any ServiceOS content processor. ServiceOS picks the
renderer based on the content type of the attachment; this
replaces previewer lookup in the system-wide Windows reg-
istry, which is unavailable in sandboxed applications. This
isolation is not only stronger but also more usable, as it ob-
viates Outlook’s prompting the user to consent to a preview
of untrusted attachments.

Like Word, we modified Outlook using its add-in frame-
work. This effort required 20 hours, including the time to
understand Outlook’s add-in model, and resulted in a small
342-line add-in.

7.2 Vulnerability analysis
We analyzed vulnerabilities published for three large Win-

dows applications during 2008-2011 [2, 34]. We evaluated
whether ServiceOS’s design mitigated these vulnerabilities
by checking whether each vulnerability was related to pars-
ing or other content processing errors. The results are shown
in Table 2. Content processing errors are widespread: 88%
of Office vulnerabilities and 85% of IE vulnerabilities are re-
lated to content parsing. Adobe Reader’s numbers included
125 vulnerabilities with unknown attack vectors; of the rest,
83% involved content processing. Exploits of all these flaws
would be naturally contained if users were using these appli-
cations on ServiceOS; Section 7.3 demonstrates this with two
concrete exploits. The rest of the vulnerabilities that Ser-
viceOS cannot contain include insecure library loading vul-
nerabilities exploitable by planting malicious DLLs, HTML
sanitization vulnerabilities leading to XSS, and denial-of-
service vulnerabilities.

The ServiceOS monitor has only 9.4K lines of code which
is significantly smaller than many applications. For exam-
ple, OpenOffice has about 9M lines of code [6], and even the
relatively simple Wordpad has more than 50K lines of code.
Fundamentally, ServiceOS does not rely on large applica-

0.3 0.6

4.2

0.4
1.0

5.3

0.4 0.4 0.8

4.4

0.5
1.0

5.3

0.5 0.5 0.9

5.7

0.9
1.3

5.7

1.9

0.0

2.0

4.0

6.0

8.0

10.0

Excel 10KB Excel 10MB Excel
100MB

Wordpad
10KB

Wordpad
10MB

Wordpad
100MB

Internet
Explorer

St
ar

t
Ti

m
e

 (
s)

 Windows ServiceOS ServiceOS (Drawbridge)

Figure 6: Time to start applications.

tions to enforce remote content security and thus reduces
the TCB for isolation logic significantly.

7.3 Exploit mitigation
To verify that our system can indeed stop exploits of con-

tent processing flaws we analyzed above, we examined two
real-world Word 2010 exploits. First, we used a proof-of-
concept parsing exploit that uses an RTF Header stack over-
flow vulnerability [35] to construct a malicious document
that looks for other, potentially sensitive Word documents
the user has concurrently opened the same Word instance
and sends them to an attacker via HTTP. The attack worked
successfully on Word 2010 version 14.0.4760, bypassing both
DEP and ASLR.4

We also crafted a second malicious document that uses
macros to perform the same attack. Word treats documents
opened from the web as untrusted and does not run macros
by default, but offers users a choice to trust the document
via a single click on a yellow security button above it. The
attack document tricks the victim to click on this button by
pretending to be a greeting card that needs permission to be
customized. Such an attack is much easier to implement as
it does not require bypasses of existing security mechanisms,
and it demonstrates the pitfalls of relying on user prompts
for isolation decisions. This attack works on the latest ver-
sion of Word 2010, provided the victim clicks on the yellow
security button.

Note that application-based isolation (such as that on iOS
or Android) would also not be able to stop these two exploits,
as they both work within the permission boundaries of their
Word instance.

Next, we tried opening both attack documents in Word
running on ServiceOS. We ran ServiceOS with UID-based
sandboxing (Section 6), as Drawbridge does not yet cor-
rectly support libraries to parse an older Word document
format required in the first exploit, or to run macros for
the second exploit. We observed that ServiceOS stopped
both exploits. Moreover, ServiceOS’s Word version did
not use any user prompts to enable macros — it no longer
needs to restrict remote documents in any way since they
are already isolated according to their owner. This provides
better user experience for documents that legitimately use
dangerous features such as macros or ActiveX.

7.4 Performance
In measuring ServiceOS performance, we were primarily

interested in (1) startup latencies we impose on opening doc-
uments, which could happen in an existing process on Win-
dows but require starting a new process in our model, (2)

4Microsoft has patched this vulnerability in later Word ver-
sions.

0

400

800

1200

1600

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 S

iz
e

 (
M

B
)

Windows (single process)
Windows (multi-process)
ServiceOS (single process)
ServiceOS (multi-process)
ServiceOS (Drawbridge)

Figure 7: Memory committed for increasing instances

of Excel. Each new instance loads a 10MB document.

overheads on memory usage, since our model uses more pro-
cesses, one for each content owner rather than one per appli-
cation, and (3) performance of our content fetch APIs, which
ServiceOS applications must use instead of native Windows
libraries. Our measurements were performed on a 64-bit
Windows 7 desktop with dual 3.16GHz Intel Xeon E8500
Duo-Core CPUs, 4GB of RAM, and a Broadcom NetX-
trem Gigabit Ethernet NIC. We present results for three
applications: Excel 2010, Internet Explorer (IE), and Word-
pad. Excel and Wordpad experiments used 10KB, 10MB
and 100MB documents; IE was used to open a simple test
page on an Intranet web server. We separate the overhead
of Drawbridge from overhead of the rest of our system where
possible, since our system can also work with other sandbox-
ing mechanisms. To run a ServiceOS application without
Drawbridge, we execute it as a regular Windows process.

Startup latencies. The ServiceOS monitor and shell
take 118ms to start. After a user navigates to a URL, our
system starts up the appropriate renderer. Figure 6 com-
pares this startup time to startup times of applications’ na-
tive versions on Windows. We find that most overhead (up
to 1.5 sec) comes from starting the Drawbridge environment.
Excluding Drawbridge, in all tests ServiceOS adds less than
200ms to connect to the monitor and initialize. An obvious
optimization is to maintain a small number of pre-created
renderers for popular content types. Even without this op-
timization, we feel the startup overhead is acceptable. For
example, if a user is viewing a web page with an embed-
ded 10KB Excel spreadsheet, starting our modified Excel on
ServiceOS would add only 112ms to Excel’s normal startup
time.

Memory usage. We measured the committed memory
size for each application with one document open. Excel
running on ServiceOS uses about 47MB more memory than
when running on Windows, regardless of document size.
This is due to Excel’s loading of interoperability DLLs re-
quired to run any Excel add-in; our plug-in itself has neg-
ligible additional memory cost. Both Wordpad and ported
IE carry a very small memory overhead (less than 3MB),
which is required to load and initialize our 74KB LibSer-
viceOS DLL. Drawbridge isolation introduces an additional
overhead of up to 37MB for Excel.

Figures 7 and 8 show the aggregate memory usage for
running multiple instances of Excel and Wordpad simultane-
ously. Both native and ServiceOS-enabled Excel is capable
of opening multiple documents in the same process or sepa-
rate processes. ServiceOS-enabled Excel render documents
in the same process only if their owners are the same; e.g.,

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 S

iz
e

 (
M

B
)

Windows (multi-process)

ServiceOS (multi-process)

ServiceOS (Drawbridge)

Figure 8: Memory committed for increasing instances of

Wordpad. Each new instance loads a 10MB document.

116 bytes 1MB 10MB

Windows (.NET program) 3ms 98ms 924ms
Windows (WinInet program) 1ms 297ms 1337ms
ServiceOS, no Drawbridge 15ms 124ms 955ms
ServiceOS, with Drawbridge 16ms 156ms 1017ms

Table 3: Overhead of fetching content of various sizes.

a chart embedded in an Excel spreadsheet from same owner
would stay in the same process. We can see that we impose
no significant penalty for opening documents from the same
owner, but documents from different owners (using different
processes) do carry a sizable memory overhead. However,
most of it comes from (1) Drawbridge, and (2) loading Ex-
cel’s add-in libraries, which adds 47MB for each new process.
We could address (1) by picking a more efficient isolation
mechanism, and improve (2) with native source-code mod-
ification, as exemplified by Wordpad which only adds 9MB
for 10 instances.

ServiceOS’s monitor and shell have little memory foot-
print, using 31.4MB of memory at worst during our tests.

Content fetch APIs. We measured the time it takes
our IE renderer to use our Fetch() API to retrieve three
documents of various sizes from a web server on a 100Mbps
local network, and compared to two popular ways Windows
programs retrieve content today: using .NET’s native Http-
WebRequest class, and using the WinInet library in Win-
dows (recall that ServiceOS’s implementation of HTTP also
uses .NET’s HttpWebRequest). Table 3 shows our results.

We find that ServiceOS introduces some latency for pass-
ing content to renderers, but that overhead is amortized for
larger document sizes. For example, for a 10MB document,
ServiceOS is only 3% (31ms) slower than a native .NET pro-
gram, excluding the 62ms of Drawbridge overhead. Most of
this is due to extra IPCs to ServiceOS monitor and unop-
timized buffering. Interestingly, .NET’s HTTP library out-
performs WinInet for larger documents; the margin is large
enough to mask ServiceOS’s overhead. Thus, native Win-
dows applications that used WinInet may actually encounter
faster content fetch with ServiceOS.

We also evaluated the overhead of various new headers
we introduced for content fetch in Sections 4 and 5, and
found that it is negligible. For example, verifying a signature
in the Owner header with a 1024-bit public key adds only
about 1.5ms to each content fetch roundtrip, enforcing the
dispatch-to directive takes less than 1ms, and parsing and
verifying trust lists takes less than 1ms even when checking
whether a document can be admitted to a PI with 100 other
documents, with all documents having 101-entry trust lists.

8. RELATED WORK
Browsers. Much recent work in browsers explored

stronger isolation of web sites. OP [18] applies a microker-
nel architecture design with a browser kernel that enforces
SOP. Tahoma [10] isolates (its own definition of) web appli-
cations using virtual machines. Major commercial browsers
like Chrome and IE have adopted a process-per-tab kind of
multi-process model and reduce privileges of tab processes.
Gazelle [49] has a design that treats web sites as OS prin-
cipals and makes its browser kernel the exclusive place for
cross-principal protection. Our work builds on Gazelle and
generalizes Gazelle’s design to support all applications be-
yond web applications. We introduce the notion of a con-
tent processing stack to give a uniform treatment for both
web content and content processed by native applications,
we generalize browsers’ same-origin policy to allow arbitrary
isolation granularity for URI-addressable content and to en-
able separation of owning and hosting, and we introduce the
dispatch bit mechanism to enforce principal definitions.

Modern client platforms. iOS, Android, Windows
Phone, Windows 8, and the research OS Singularity [20, 51]
all treat application code packages as different principals
and put their execution instances into separate processes
with different uids. While this marks a milestone of finally
moving away from the decades-old model of treating user
accounts as principals, we take another significant step by
advocating a content-based principal model.

IBOS [45] aims to reduce the trusted computing base for
browsers by applying a microkernel design for all traditional
OS components, exposing browser abstractions at the lowest
software layer and removing many components not needed
by browsers. IBOS solves an orthogonal problem from ours.
Our problem is to let the OS provide content-based isolation
for browsers and non-browser applications alike.

Embassies [19] describes web browsers as pico-datacenters
where each ”machine” corresponds to a web site and is iso-
lated from other sites or ”machines”. This view is consistent
with the semantics of existing browsers where the same-
origin policy is applied to isolate web sites. Nevertheless,
existing browsers do not realize isolation reliably. Embassies
advocates refactoring browsers into the CEI and the DPI.
This mirrors the refactoring done in Gazelle [49]: CEI cor-
responds to the Browser Kernel API in Gazelle which is
runtime-independent; DPI corresponds to the runtime API
in Gazelle’s principal instances, which allows any program-
ming languages or enrichment of the runtime as needed. Em-
bassies defines web site principals using public keys, similar
to one of our principal ID proposals (Section 4.2.1). Our
work additionally considers content processing stacks (Sec-
tion 4.1) and cross-principal content fetch of two forms: data
communication and spawning new principals (Section 5)
which are commonplace in practice. Finally, ServiceOS aims
to support both web applications and native applications
on the same OS platform without compromising security se-
mantics of the web while allowing easy adaptation of native
applications.

This work follows up on our earlier position paper on Ser-
viceOS [50].

Other isolation policies. SubOS [22] observed that
each (remote) data object needs to be rendered with a dif-
ferent principal label, called a sub-user id. SubOS includes a
browser [21] which puts each URL page in a separate SubOS
process. The SubOS’s isolation policy is fixed and can be

too fine-grained for many content owners. In contrast, we
enable isolation policies of arbitrary granularity while being
compatible with web.

PinUP [14] advocates an isolation policy that restricts
which applications may access a particular local file. Un-
like ServiceOS, PinUP does not isolate mutually distrusting
files opened by a single application.

COP [7] proposes to extend the same-origin policy by let-
ting web content specify new origins using unique origin IDs;
this bears some similarity to our owner-ID-based labeling
proposal. Although COP’s goals are similar to our principal
labeling goals (Section 4.2), COP’s origin ID management
is complex and may involve HTML and JavaScript modifi-
cation, which we do not require for web sites in our system.
COP does not support native applications or browser plug-
ins, whereas our system’s primary goal is to offer a general-
ized policy and to support both web and native applications.

Isolation mechanisms. Many mechanisms [33, 53, 12,
38, 47, 15, 29, 3, 26] have been developed to confine applica-
tions. Usually, these approaches either require applications
to formulate their own security policies, resulting in many
inconsistent policies coexisting on the system, or they put
this burden on administrators. Our work defines a uniform
isolation policy as defined by the content-based principal
model and shifts its enforcement to the OS. We also needed
to design new mechanisms for specifying (Section 4) and
enforcing (Section 5) the principal definitions.

Object-capability systems and DIFC techniques [42, 54,
13, 27] can be used to implement isolation mechanisms. Re-
alizing our principal model on these systems is an area of
future research.

9. CONCLUSION
We advocate a content-based principal model in which the

operating system relieves applications from the burden of
isolating remotely addressable content, boosting the security
of both user’s data and the system by localizing the impact
of any content including malicious content. Our key contri-
bution is to generalize web browsers’ same-origin policy into
an isolation policy suitable for all applications while main-
taining compatibility with the web. To this end, we have in-
vented content processing stacks to conceptualize execution
instances and introduced a general principal model that en-
ables flexible isolation granularities using public-key-based
owner IDs or trust lists to define principals. For principal
definition enforcement (beyond robust isolation container
design), we introduced the dispatch bit for cross-principal
content fetch and dispatch.

We have built a substantial prototype system and adapted
to it a number of real-world applications, such as Word, Ex-
cel, and Outlook. Our vulnerability study indicates that
exploits against more than 80% of vulnerabilities of popular
software can be contained. We have demonstrated that real-
world exploits’ impact can indeed be isolated in our system,
and our performance evaluation shows that our system is
practical. From these experiences, we believe that content-
based isolation policy is indispensable for future client plat-
forms where applications increasingly interface with cloud-
backed content.

10. ACKNOWLEDGEMENTS
We thank Barry Bond, Galen Hunt, and Reuben Olinsky

for their help with Drawbridge integration. We thank Chris
Hawblitzel for his valuable feedback on our paper draft. We
thank Bill Barlowe for his help with our vulnerability anal-
ysis.

11. REFERENCES
[1] Adobe Secure Software Engineering Team. Inside

Adobe Reader Protected Mode. http:
//blogs.adobe.com/asset/tag/protected-mode.

[2] Adobe Security Bulletin Search.
http://www.adobe.com/support/security/.

[3] AppArmor Application Security for Linux.
http://www.novell.com/linux/security/apparmor/.

[4] A. Barth. The web origin concept. Internet-Draft,
http://tools.ietf.org/html/draft-abarth-

origin-09, 2010.
[5] A. Barth, C. Jackson, and J. C. Mitchell. Robust

defenses for cross-site request forgery. In To appear at
the 15th ACM Conference on Computer and
Communications Security (CCS 2008), 2008.

[6] Build FAQ for OpenOffice.org.
http://www.openoffice.org/FAQs/build_faq.html.

[7] Y. Cao, V. Rastogi, Z. Li, Y. Chen, and A. Moshchuk.
Redefining web browser principals with a configurable
origin policy. In DSN, 2013.

[8] T. Close. Decentralized identification.
http://www.waterken.com/dev/YURL/.

[9] C. Collberg, J. H. Hartman, S. Babu, and S. K.
Udupa. Slinky: static linking reloaded. In USENIX
ATC, 2005.

[10] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M.
Levy. A safety-oriented platform for web applications.
In IEEE Symposium on Security and Privacy, 2006.

[11] Content security policy (csp).
https://wiki.mozilla.org/Security/CSP/Spec.

[12] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applications
on the web. In OSDI, 2008.

[13] P. Efstathopoulos, M. Krohn, S. VanDeBogart,
C. Frey, D. Zieglar, E. Kohler, D. Mazieres,
F. Kaashoek, and R. Morris. Labels and Event
Processes in the Asbestos Operating System. In
SOSP, 2005.

[14] W. Enck, P. McDaniel, and T. Jaeger. Pinup: Pinning
user files to known applications. In ACSAC, 2008.

[15] I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A secure environment for untrusted helper
applications. In USENIX Security, 1996.

[16] Google Cloud Connect for Microsoft Office.
http://tools.google.com/dlpage/cloudconnect.

[17] GreenBorder. www.google.com/greenborder/.
[18] C. Grier, S. Tang, and S. T. King. Secure web

browsing with the OP web browser. In Proceedings of
the IEEE Symposium on Securiy and Privacy, 2008.

[19] J. Howell, B. Parno, and J. Douceur. Embassies:
Radically refactoring the web. In NSDI, 2013.

[20] G. Hunt and J. Larus. Singularity: Rethinking the
Software Stack. In Operating Systems Review, April
2007.

http://blogs.adobe.com/asset/tag/protected-mode
http://blogs.adobe.com/asset/tag/protected-mode
http://www.adobe.com/support/security/
http://www.novell.com/linux/security/apparmor/
http://tools.ietf.org/html/draft-abarth-origin-09
http://tools.ietf.org/html/draft-abarth-origin-09
http://www.openoffice.org/FAQs/build_faq.html
http://www.waterken.com/dev/YURL/
https://wiki.mozilla.org/Security/CSP/Spec
http://tools.google.com/dlpage/cloudconnect
www.google.com/greenborder/

[21] S. Ioannidis and S. M. Bellovin. Building a secure web
browser. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, 2001.

[22] S. Ioannidis, S. M. Bellovin, and J. M. Smith.
Sub-operating systems: A new approach to application
security. In SIGOPS European Workshop, 2002.

[23] C. Jackson. Improving browser security policies. PhD
thesis, Stanford University, CA, 2009.

[24] C. Jackson and A. Barth. Beware of Finer-Grained
Origins. In Web 2.0 Security and Privacy, May 2008.

[25] C. Karlof, J. Tygar, D. Wagner, and U. Shankar.
Dynamic Pharming Attacks and Locked Same-Origin
Policies for Web Browsers. In CCS, 2007.

[26] T. Kim and N. Zeldovich. Making Linux protection
mechanisms egalitarian with UserFS. In Usenix
Security, aug 2010.

[27] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information
Flow Control for Standard OS Abstractions. In 21st
Symposium of Operating Systems Principles, 2007.

[28] E. Lawrence. XDomainRequest - Restrictions,
Limitations and Workarounds.
http://blogs.msdn.com/b/ieinternals/archive/

2010/05/13/xdomainrequest-restrictions-

limitations-and-workarounds.aspx.
[29] P. Loscocco and S. Smalley. Integrating flexible

support for security policies into the Linux operating
system. In Proceedings of the 2001 USENIX Annual
Technical Conference, 2001.

[30] Microsoft. Protected View in Office 2010.
http://blogs.technet.com/b/office2010/archive/

2009/08/13/protected-view-in-office-2010.aspx.
[31] Microsoft. Remote desktop protocol.

msdn.microsoft.com/en-

us/library/cc240445(PROT.10).aspx.
[32] Microsoft. Windows Internet API.

msdn.microsoft.com/en-

us/library/aa385331(VS.85).aspx.
[33] Microsoft. Windows Vista Integrity Mechanism

Technical Reference.
http://msdn.microsoft.com/en-

us/library/bb625964.aspx.
[34] Microsoft security bulletins and advisories: MS10-087,

MS10-079, MS10-103. http://www.microsoft.com/
technet/security/current.aspx.

[35] MS Office 2010 RTF Header Stack Overflow
Vulnerability.
http://www.exploit-db.com/exploits/17474/.

[36] P. Muncaster. How We Found the File That Was Used
to Hack RSA. http://www.f-
secure.com/weblog/archives/00002226.html,
August 2011.

[37] L. Popa, A. Ghodsi, and I. Stoica. Http as the narrow
waist of the future internet. In HotNets, Monterey,
CA, 2010.

[38] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the library OS from the
top down. In ASPLOS, 2011.

[39] Programming application-level add-ins.
http://msdn.microsoft.com/en-

us/library/bb157876.aspx.
[40] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, and

H. J. Wang. User-driven access control: Rethinking
permission granting in modern operating systems. In
IEEE Symposium on Security and Privacy, 2012.

[41] J. Ruderman. The Same-Origin Policy.
http://www.mozilla.org/projects/security/

components/same-origin.html.
[42] J. S. Shapiro and S. Weber. Verifying the eros

confinement mechanism. In IEEE Symposium on
Security and Privacy, 2000.

[43] Shatter Attacks - How to break Windows.
http://www.thehackademy.net/madchat/vxdevl/

papers/winsys/shatter.html.
[44] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On

the incoherencies in web browser access control
policies. In IEEE Symposium on Security and Privacy,
2010.

[45] S. Tang, H. Mai, and S. T. King. Trust and protection
in the Illinois Browser Operating System. In OSDI,
2010.

[46] A. van Kesteren. Cross-origin resource sharing. W3C
Working Draft, http://www.w3.org/TR/cors/, 2010.

[47] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation. In
SOSP, 1993.

[48] H. J. Wang, X. Fan, J. Howell, and C. Jackson.
Protection and Communication Abstractions in
MashupOS. In ACM Symposium on Operating System
Principles, October 2007.

[49] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principal OS
Construction of the Gazelle Web Browser. In USENIX
Security, 2010.

[50] H. J. Wang, A. Moshchuk, and A. Bush. Convergence
of Desktop and Web Applications on a Multi-Service
OS. In HotSec, 2009.

[51] T. Wobber, A. Yumerefendi, M. Abadi, A. Birrell, and
D. R. Simon. Authorizing Applications in Singularity.
In Eurosys, March 2007.

[52] XMLHttpRequest Level 2.
http://www.w3.org/TR/XMLHttpRequest/.

[53] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native client: A sandbox for portable, untrusted x86
native code. In IEEE Symposium on Security and
Privacy, 2009.

[54] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In 7th Symposium on Operating Systems
Design and Implementation, 2006.

http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
http://blogs.technet.com/b/office2010/archive/2009/08/13/protected-view-in-office-2010.aspx
http://blogs.technet.com/b/office2010/archive/2009/08/13/protected-view-in-office-2010.aspx
msdn.microsoft.com/en-us/library/cc240445(PROT.10).aspx
msdn.microsoft.com/en-us/library/cc240445(PROT.10).aspx
msdn.microsoft.com/en-us/library/aa385331(VS.85).aspx
msdn.microsoft.com/en-us/library/aa385331(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb625964.aspx
http://msdn.microsoft.com/en-us/library/bb625964.aspx
http://www.microsoft.com/technet/security/current.aspx
http://www.microsoft.com/technet/security/current.aspx
http://www.exploit-db.com/exploits/17474/
http://www.f-secure.com/weblog/archives/00002226.html
http://www.f-secure.com/weblog/archives/00002226.html
http://msdn.microsoft.com/en-us/library/bb157876.aspx
http://msdn.microsoft.com/en-us/library/bb157876.aspx
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.thehackademy.net/madchat/vxdevl/papers/winsys/shatter.html
http://www.thehackademy.net/madchat/vxdevl/papers/winsys/shatter.html
http://www.w3.org/TR/cors/
http://www.w3.org/TR/XMLHttpRequest/

	Introduction
	Threat Model
	System Model
	Defining Principals
	Execution instance as a content processing stack
	Principal labeling and isolation policies
	Public key as owner ID
	Augmenting SOP with Trust Lists
	Coexistence with legacy browsers

	Enforcing Principal Definitions
	Implementation
	Adapting native applications

	Evaluation
	Ease of adapting native applications
	Microsoft Word and Excel 2010
	Wordpad
	Internet Explorer
	Microsoft Outlook 2010

	Vulnerability analysis
	Exploit mitigation
	Performance

	Related Work
	Conclusion
	Acknowledgements
	References

