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ABSTRACT
Recent work [27, 15] introduced a novel peer-to-peer applica-
tion that leverages content sharing and aggregation among
the peers to diagnose misconfigurations on a desktop PC.
This application poses interesting challenges in preserving
privacy of user configuration data and in maintaining in-
tegrity of troubleshooting results. In this paper, we provide
a much more rigorous cryptographic and yet practical solu-
tion for preserving privacy, and we investigate and analyze
solutions for ensuring integrity.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: [Public Policy Issues-
privacy]

General Terms
Security, Design

Keywords
Privacy, Integrity, Automatic Troubleshooting, Homomor-
phic Encryption, Zero Knowledge Proof

1. INTRODUCTION
Recent work [27, 15] introduced a novel (and legal) peer-

to-peer application that leverages content sharing and ag-
gregation among the peers to diagnose misconfigurations on
a desktop PC automatically. The diagnosis is based on the
PeerPressure troubleshooting algorithm [28]. The key intu-
ition of PeerPressure is that misconfigurations of a PC are
likely anomalous when compared with the respective config-
urations from other PCs having the same setting. Hence, in
a peer-to-peer setting, the troubled PC collects respective
configuration data from the peers. Then the anomalous-
looking configuration entries on the troubled machine are
diagnosed as misconfigurations, and the most popular con-
figuration values from the peers are used as the correction
values.
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This application poses interesting challenges in preserv-
ing privacy of user configuration data and in maintaining
integrity of troubleshooting results, since configuration data
often contain privacy-sensitive information and a peer is not
always trustworthy. To this end, the authors of [27, 15] pro-
posed a Friends Troubleshooting Network (FTN), which is
an unstructured peer-to-peer network where a link between
two machines represents friendship of their owners, and the
two machines trust each other’s content being exchanged. A
structured peer-to-peer network is unsuitable because build-
ing up the indices for routing necessarily compromises the
privacy of application ownership; for example, one may want
to maintain privacy with respect to owning the KaZaa appli-
cation. Furthermore, recursive trust, rather than transitive
trust, is assumed in FTN — Alice trusts Bob’s content, and
Bob trusts Carol’s content, but Alice does not trust Carol’s
content. In FTN, privacy is achieved using source-less and
destination-less random-walk of a troubleshooting request
initiated from a troubled machine, but where the immediate
last hop and next hop are recorded on each involved node;
during the random walk, respective configuration data is
gathered.

There are two key limitations of the current FTN solu-
tion. The first one is that the gathered configuration data
is in plain text, though in aggregated form. Some forms
of collusion can give away privacy-revealing statistics. The
second limitation is that the data integrity problem is not
explored. In this paper, we address the first limitation by
tailoring a homomorphic encryption scheme to scale with
the FTN scenario. Our design has the novel property that
decryption shares can be dynamically assembled among the
participants during the data collection phase, with no need
for a dedicated key sharing phase. To explore the integrity
problem, we investigate and analyze the effectiveness of zero
knowledge proof together with a branching solution where
multiple branches are taken to gather the configuration data,
using a real-world friends network topology. We find that
when the percentage of compromised nodes is moderate or
small (e.g. 1% or less), our approach can effectively reduce
the risk of malicious data injection attacks to nearly zero.

For the rest of the paper, we first provide background on
PeerPressure in Section 2. Then we state our attacker model
in Section 3. In Section 4, we review the previous FTN
solution and its limitations. We then introduce a privacy-
preserving data aggregation protocol for FTN based on ho-
momorphic encryption and various enhancements and opti-
mizations (Section 5, 6, 7, 9). Section 8 addresses the data
integrity problem. We analyze our protocol overhead in Sec-



tion 10. Using real-world instant messenger (IM) data, we
present a security evaluation of our design in Section 11. A
brief review of related work is given in Section 12, followed
by our conclusion.

Acknowledgments: We are grateful to Josh Benaloh for
providing insightful discussion and comments on an earlier
draft of this paper, and to the anonymous reviewers for their
numerous helpful suggestions and corrections.

2. BACKGROUND: PEERPRESSURE
The PeerPressure troubleshooting algorithm uses respec-

tive configuration data from peers to diagnose the anom-
alous configuration entries on the troubled machines. The
operation goes as follows: PeerPressure first uses application
tracing to capture the configuration entries and values that
are touched by the abnormal execution of the application
under troubleshooting. These entries are misconfiguration
suspects. Next, from a sample set of helper machines, for
each suspect entry e, PeerPressure obtains the number Me

of samples that match the value of the suspect entry, the
cardinality Ce (the number of distinct values for this entry
among the sample set), and the most popular value for the
entry. PeerPressure uses these parameters along with the
sample set size and the number of suspect entries to calcu-
late the probability of a suspect entry being the cause of the
symptom: Pe = N+Ce

N+Cet+CeMe(t−1)
where N is the number

of samples and t is the number of suspects. The top ranking
entries with regard to this probability are diagnosed as the
root-cause candidates. Then, the troubleshooting user can
use the collected, most popular values for corrections1. The
sample set can be obtained either from a database of con-
figuration snapshots collected from a large number of user
machines or from a peer-to-peer troubleshooting community
such as the one described in this paper. PeerPressure has
been shown to be effective in troubleshooting [28].

3. ATTACKER MODEL AND SECURITY
OBJECTIVES

3.1 Security Objective
The information being communicated in FTN is PC con-

figuration data. We denote the complete set of configuration
data on a machine as D. A certain subset of D contains
identity-revealing information, such as usernames and cook-
ies, and we denote this subset as Di. A canonicalizer first fil-
ters any user-specific entries into a canonicalized form2. The
remaining set of configuration data Dr = D −Di may con-
tain information that compromises privacy when linked with
user identity. Some examples of such information are URLs
visited and applications installed. Our privacy objective is
to protect all peers’ privacy by anonymizing such privacy-
sensitive information in Dr; of course, Di must never be
revealed. In addition to the configuration data, we aim
to protect the identities of the sick machine (i.e., the trou-
bleshooter) and the peer helpers. In some cases, the mere
fact that one is running a particular application may be
privacy-sensitive.

1Proper roll-back mechanisms are needed if a root-cause
candidate is not actually the root cause (when the correction
does not remove the sick symptom).
2Finding all identity-revealing entries is an open research
question.

Aside from the privacy of troubleshooting users, we also
aim to protect the integrity of their contributed configura-
tion information, since a compromised friend may lie about
the configuration state it has, leading to incorrect trou-
bleshooting results.

3.2 Attacks
We assume a friendly operational environment in FTN

where attackers are simply curious friends, together with
an occasional compromised machine that has not yet been
repaired by its user.

Curious friends may launch passive attacks to obtain pri-
vate information, but will never intentionally lie about their
configuration state or alter troubleshooting results, since
they do have incentives to help their friends out. Passive
attacks initiated by curious friends include the following:

1. Eavesdropping on machines on the same LAN.

2. Message inspection attack: Infer privacy-sensitive in-
formation by passively inspecting the messages that
are passing by.

3. Gossip attack: Friends may participate normally in a
legitimate request, but simply gossip and share what
they know to compromise privacy.

Friends can exchange public keys out of band and use
them to establish secure communication channels, which
renders eavesdropping attacks ineffective. Therefore, we do
not specifically address this attack in our paper.

A compromised machine, on the other hand, may launch
active attacks against its peer friends to compromise their
privacy, or to corrupt the integrity of the troubleshooting
result. Active attacks include the following:

1. Troubleshooter attack: A compromised host may fab-
ricate a troubleshooting request to infer his friend’s
private information. For example, it may collude with
a node on the forwarding path to determine the aggre-
gate data values of all the nodes in between. We call
this form of attack a troubleshooter attack, because
it relies on the initiator participating in the attack by
fabricating a troubleshooting request.

2. Data injection attack: A compromised host may lie
about the application it owns and the configuration
state it has, or tamper with other peers’ contributions,
leading to incorrect troubleshooting results.

Another form of passive attack that a compromised node
may launch is non-participation. A compromised host may
refuse to propagate the troubleshooting request it receives,
or drop the response messages, causing the troubleshooting
communication path to fail. However, this attack has no
effect on our security objective, since by merely not partici-
pating, the attacker does not inject false configuration infor-
mation into the response, and gains no private information
about other peers. The troubleshooter may still seek help
from other honest friends after a suitable timeout on the
non-participating node has elapsed. Therefore, we do not
address this attack in our paper.

4. PREVIOUS DESIGN
In this section, we briefly review the previous FTN pro-

tocol design [27, 15] and its weaknesses.



4.1 Creating a Request on the Sick Machine
A sick machine first filters out the identity-revealing en-

tries from the suspects. This filtering step prevents informa-
tion compromise via entry names, and in practice does not
hurt the performance of the PeerPressure algorithm since
identity-revealing entry names are unlikely to be a root cause
of the symptom. Then it creates a troubleshooting request
which contains 1) the name of the application executable
that is under troubleshooting; 2) a random nonce ReqID
identifying the request; 3) the value distribution (or his-
togram) of each suspect entry e — that is, a list of values
that e can take, and the vector me(i) counting the occur-
rences of each value i of e from the sample set. The goal
of the FTN protocol is for a sick machine to obtain the ag-
gregate value distributions for all suspect entries. With the
value distribution of each entry e, the sick node can extract
the cardinality, the number of matches, and the most popu-
lar value to carry out the PeerPressure diagnosis (Section 2).

To preserve source anonymity, the troubleshooting mes-
sage is designed to be ownerless, and the value distribution
field is randomly initialized by the requester.

4.2 Parameter Aggregation Through a Source-
less and Destination-less Random Walk

The FTN is an unstructured peer-to-peer network where
overlay links are made only to trusted friends’ machines.
Search for samples and parameter aggregation is integrated
in a source-less and destination-less random walk on the
friends overlay network topology.

The sick machine first establishes a secure channel with an
available friend chosen at random and sends this friend the
troubleshooting request. To avoid routing loops or double-
counting, the friend responds with an acknowledgment only
if it has not already seen the ReqID of the arriving request.

A friend that receives a troubleshooting request and runs
the application under troubleshooting only becomes a helper
with probability Ph. A helper needs to update the trou-
bleshooting request. For each suspect entry e, the helper
increments me(i) where i is its own value for e. Then, with
a probability of forwarding Pf = 1− 1/N , the helper prox-
ies the request to one of its friends, where N is the num-
ber of samples needed; otherwise it becomes the last hop.
This probabilistic proxying makes routing entirely history-
less. Nodes that do not help always forward the request to
their friends. This results in N helpers being involved on
average. Each node on the forwarding path must record the
ReqID, along with the previous and next hop friend.

The last-hop node waits for a random amount of time,
then sends the reply back to the previous hop. The reply
follows the request path back to the sick machine. The sick
machine first subtracts the random initialization from the
value distributions; then it performs PeerPressure diagnosis.

4.3 Clustering
If a helper contributes its relevant configuration state di-

rectly, its previous and next hop may gossip to determine its
configuration information. The previous design addressed
the gossip attack via a cluster-based multiparty secure sum
protocol.

When a node receives a troubleshooting request, instead
of contributing to the request individually, it forms a trou-
bleshooting cluster from its immediate friends. The initiat-
ing node serves as the cluster entrance. Each cluster partici-

pant represents its own contribution using the vector format
me(i). The contribution of the cluster entrance includes the
aggregate value distribution from the previous hops. Mem-
bers who do not run the application or who choose not to
help according to Ph will contribute the all zeroes vector.
Members who help will set the vector element correspond-
ing to their value to 1, and 0’s for the rest. The cluster
entrance then initiates a secure multi-party sum procedure
that blends individual cluster member’s contributions into
an aggregate that encapsulates the contributions from both
the cluster and the past hops. A separate cluster member
(other than the entrance) is selected as the cluster exit for

receiving the aggregate. With probability P
Vh
f (where Vh is

the number of helpers in the cluster), the exit further prox-
ies the request to one of its friends chosen at random, which
becomes the cluster entrance of the next hop.

4.4 Weaknesses of Previous Design and Our
Motivations to Use Homomorphic Encryp-
tion

In the previous design, the gathered configuration data
is in plain text. A curious entrance and exit can launch a
passive attack merely by sharing what they know to com-
promise privacy of the cluster as a unit. In this paper, we
use homomorphic encryption (Section 5) to encrypt each in-
dividual’s contribution, which robustly guarantees privacy
under the passive attacker model.

The previous design does not address compromised nodes.
In the real world, friends’ machines might be occasionally
compromised, leading to active attacks against the FTN
protocol, in the forms of the troubleshooter attack and the
data injection attack (Section 3.2). Homomorphic encryp-
tion can be combined together with the clustering strategy
(Section 6) to mitigate the troubleshooter attack. We also
propose a further enhancement by forking the troubleshoot-
ing path, to make the troubleshooter attack less productive
(Section 11.2).

The previous design does not provide any protection for
the integrity of the troubleshooting result. A compromised
host may hence launch a data injection attack by contribut-
ing false configuration information, leading to incorrect trou-
bleshooting results. The use of homomorphic encryption en-
ables verification of data validity via zero knowledge proof
(ZKP), which together with our proposed multiple-branch
troubleshooting strategy largely reduces the risk of success-
ful data injection attacks (Section 11.3).

5. PRIVACY-PRESERVING DATA AGGRE-
GATION USING HOMOMORPHIC EN-
CRYPTION

We now present an encryption scheme for parameter ag-
gregation which provides robust guarantees of data privacy
through the use of secure electronic voting protocols. For
simplicity, we assume that the entry e takes on only two
possible values (e.g. 0 or 1) and that clustering is not used;
later we will explain how to remove these restrictions. Note
that this scenario is very similar to that of a secure elec-
tion: in both cases we want to generate an accurate tally of
the number of participants who voted 1, without revealing
who contributed a 1 and who contributed a 0. In order to
accomplish encrypted data collection, we employ a type of
homomorphic voting system with threshold decryption [2,



3]. The particular scheme we use is a simplified version of
the ElGamal based election scheme of Cramer, Gennaro,
and Schoenmakers [9]; this scheme was chosen over the oth-
ers because of its optimality with respect to communication
complexity. In this paper, we modify the CGS protocol so
that shares of the decryption key can be aggregated in par-
allel with the participant recruitment and data collection
steps. To our knowledge, this represents the first threshold
decryption design which performs secret key sharing and
data aggregation simultaneously.

Let (G, ·) be a mathematical group which is generated
by an element g ∈ G of finite order. Given a public key gs,
where s is secret, an ElGamal encryption E(m) of a message
m consists of a pair (gr, grs ·gm), where r is chosen randomly
by the machine performing the encryption. A crucial prop-
erty of ElGamal encryption is that it is homomorphic: given
two encryptions

E(m1) = (gr1 , gr1s · gm1)

E(m2) = (gr2 , gr2s · gm2)

of m1 and m2 respectively, the encryption

E(m1 + m2) = (gr1+r2 , g(r1+r2)s · gm1+m2)

of m1 + m2 can be computed by multiplying the compo-
nents of E(m1) and E(m2), without having to perform any
decryption. If one imagines that m1 and m2 represent vote
tallies, then the homomorphic property means that anyone
can add up encrypted votes, but only those who know the
secret key can decrypt the tally.

We now describe the procedure for performing parame-
ter aggregation within an FTN request. In order to avoid
concentrating the secret key in the hands of one party, we
mutate the secret key at each step of the random walk, as
described below. We assume that the group G and the gen-
erator g are global constants which are built into the FTN
client program.

5.1 Initialization phase

• The troubleshooter picks a pair of integers r0, s0 at
random and computes E(m) = (gr0 , gr0s0 · gm), where
m is the troubleshooter’s value for the entry, either 0
or 1.

• The troubleshooter stores the secret key s0, and for-
wards the encrypted value E(m) and the public key
gs0 to an available friend.

5.2 Random walk phase

• Assume that the i-th node on the request path re-
ceives a public key of the form gs0+s1+···+si−1 and an
encryption E(m) = (gr, gr(s0+s1+···+si−1) · gm) of m,
where m represents the number of votes for 1 which
have been accumulated so far in the random walk. For
convenience, write s for s0 + s1 + · · ·+ si−1.

• The node picks a new secret key si at random, and
computes the values

gs+si = gs · gsi

gr(s+si) · gm = (grs · gm) · grsi

The quantity E′(m) = (gr, gr(s+si) ·gm) is now a valid
encryption of m under the new public key gs+si .

• The friend replaces the old public key gs with the new
public key gs+si , and replaces the old encrypted value
E(m) with the new encrypted value E′(m). Note that
E(m) and E′(m) both represent encryptions of the
same value, but under different public keys.

• If the friend chooses to become a helper, then he forms
an encrypted message E′(mi) = (gri , gri(s+si) · gmi)
under the new public key where mi is his own value
for the entry and ri is chosen randomly, and uses the
homomorphic property to compute the encrypted tally
E′(m + mi) = (gr+ri , g(r+ri)(s+si) · gm+mi).

• The new public key and the new encrypted tally are
forwarded to the next node. The secret key si is stored
for use during decryption.

5.3 Decryption phase

• The last hop has a public key of the form gs0+···+st

and an encrypted value E(m) = (gr, gr(s0+···+st) · gm)
representing the final tally of the number of votes for
1. Since he owns the secret key st, he can compute

gs0+···+st−1 = (gs0+···+st)/gst

gr(s0+···+st−1) · gm =
(gr(s0+···+st) · gm)

grst

Note that (gr, gr(s0+···+st−1) ·gm) is a valid encryption
of m under the public key gs0+···+st−1 .

• The last hop sends the encrypted value
(gr, gr(s0+···+st−1) · gm) to the previous hop.

• Proceeding inductively, the i-th node possesses a pub-
lic key of the form gs0+···+si and receives an encrypted
value E(m) = (gr, gr(s0+···+si) ·gm), and sends the en-

crypted value (gr, gr(s0+···+si−1) · gm) to the previous
hop.

• The troubleshooter receives (gr, grs0 ·gm) from the first
node, and recovers

gm = (grs0 · gm)/grs0

using the stored value of s0.

5.4 Tallying phase

• Since the tally m is guaranteed to be less than the
number of participants t in the FTN request (typi-
cally, under 256), the troubleshooter can find m by
computing g0, g1, . . . , gt and stopping at the first one
of these which matches gm.

• For very large values of t, the value of m can be found
in O(

√
t) time using the time-space tradeoff known

as baby-step-giant-step: form a table of values T =

{gjd√te | j = 0, 1, . . . , d√te}, and compute gm/gi for
i = 0, 1, . . . , d√te, stopping at the first value of i for

which gm/gi = gjd√te appears in T . The value of m
will be i + jd√te.

Readers who are familiar with the framework of [9] will
recognize the above scheme as an additive (t, t) threshold de-
cryption scheme where each FTN node is an election author-
ity. The main difference here is that we accumulate shares of



the secret key dynamically during the random walk phase
instead of instantiating secret key shares statically during
the initialization phase. In principle, more general (t, n)
threshold decryption schemes such as [21] and [24] could
provide greater robustness against non-cooperative nodes,
but this does not help here since random walk path is histo-
ryless and the return packet already needs the cooperation of
every FTN node in order to make its way back to the trou-
bleshooter. This reliance on honest behavior means that
the encryption scheme given here does not protect a user’s
privacy against active attacks such as the troubleshooter at-
tack. Instead, the purpose of the encryption is to protect
users from passive attacks where we assume the attackers
are curious friends who log and share whatever data they
acquire in the course of responding to a legitimate request,
but do not alter results or fabricate false data in any way.
In the passive attack model, [9, Theorem 2] combined with
the Diffie-Hellman assumption shows that no coalition can
gain any information about individual votes except for that
which is implied by the votes which are cast by the coalition
and the final tally.

Another advantage of using homomorphic encryption is
that we can require the participants to give zero knowledge
proofs of data validity, in order to show that all protocol op-
erations are legitimate and that they are not manipulating
the tallies in any way. Since zero knowledge proofs inter-
act with the protocol elements described in the next few
sections, we defer discussion of the topic to Section 8.

6. CLUSTERING
In addition to protecting users against gossip attacks, the

cluster-based secure multi-party sum protocol of [15] pro-
vides some protection against troubleshooter attacks by lim-
iting the extent to which any single machine’s information
can be isolated. As we will see in this section, it is pos-
sible to combine the clustering enhancement together with
encrypted vote tallying without making any major changes
to either scheme.

The clustering procedure requires four steps:

1. Random share generation and distribution: Each clus-
ter member generates G−1 random shares for its con-
tribution vector where G is the cluster size, and dis-
tributes each share to a distinct cluster member. The
shares are signed with the sender’s public key. Note
that these shares do not need to be encrypted, since
no proper subset of the shares reveals any information
about the value of the vector.

2. Cluster exit election: This step proceeds unchanged,
except that in addition to selecting a cluster exit, a
number of keyholders are also selected (typically, one
keyholder per cluster will suffice). The cluster entrance
broadcasts the first component gr of the encrypted
message to each keyholder. Each keyholder in turn
generates a secret key si as in the basic aggregation
protocol, and unicasts the quantities gsi and grsi to
the cluster entrance. The cluster entrance then cal-
culates the new public key using the values gsi , and
broadcasts the new public key gs+si to the cluster,
where gs is the old public key it received from the pre-
vious hop.

3. Unicast subtotal to the cluster exit: Each cluster mem-
ber sums up all the shares it has received, encrypts
this sum with the new public key, and unicasts its en-
crypted subtotal to the cluster exit. In addition, the
cluster entrance modifies the old encrypted total to
use the new public key, and adds the old total into
his subtotal using the homomorphic property before
sending the combined total to the cluster exit.

4. Exiting the cluster: The cluster exit uses the homo-
morphic property of the encryption scheme to sum up
the received subtotals from all participants, and then
sends this encrypted total along with the new pub-
lic key to the next recipient. All other aspects of the
protocol remain unchanged.

On the return trip, the encrypted result is relayed to each
keyholder and decrypted in the same manner as in Section 5.

7. DEALING WITH UNKNOWN
CARDINALITIES

We now consider the case where the set of possible val-
ues for the entry is unknown. As in [15], this problem can
be solved by using a hash function h to map the values
of the entry into a small numerical range 1, . . . , C. The
FTN nodes will then maintain the number of entry values
(m1, m2, . . . , mC) that hash to each of the C values in the
troubleshooting request. In other words, the voting scheme
must maintain a vector of tallies instead of a single tally.
There are two ways that this can be achieved:

1. Pick a predetermined list of generators g1, g2, . . . , gC ,
and encode a vector m = (m1, . . . , mC) as

E(m) = (gr, grs ·
CY

i=1

gmi
i ).

2. Encrypt each value mi separately, and transmit a list
of encryptions (E(m1), . . . , E(mC)) instead of a single
encryption.

Option 1 increases the complexity of the tallying phase of
the protocol — instead of recovering a single value m given
gm, the troubleshooter now has to recover an entire vector
m = (m1, . . . , mC) given only the single value

QC
i=1 gmi

i .
Assuming each coordinate mi has maximum size t, the re-
covery of m will take O(tC) time using the naive brute-

force search method, or O(tC/2) if the baby-step-giant-step
method of Section 5 is used. For this reason, Option 1 can
only accommodate values of C up to about C = 4 before
the computational overheads become prohibitive.

Option 2 is less computationally taxing because the com-
putational overhead increases only linearly in C instead of
exponentially. However, the size of each packet also in-
creases by a factor of C under Option 2. Since we want to
keep bandwidth utilization to a minimum, we use a hybrid
scheme wherein we transmit a list of encryptions of length
C2 as in Option 2, but each element of that list in turn
encodes a short vector of length C1 as in Option 1. Even
a modest value of C1 such as 3 will reduce the bandwidth
overhead by a factor of 3.

In [15] the authors propose using a range of 96 values per
entry partitioned into six independent hashes of 16 values



Prover Verifier
(x, y) = (gsi , grsi)

w ∈ Z chosen randomly

(a, b) = (gw, grw)
a,b−→
c←− c ∈ Z chosen randomly

z = w + csi
z−→ gz ?

= axc

grz ?
= byc

Figure 1: Zero knowledge proof that y = xr, given g
and gr

each. Using these parameters, the probability of any root
cause candidate triggering a simultaneous collision in all six
hash functions is under 5% for typical troubleshooting re-
quests. If we encode this list of 96 values using C1 = 3 and
C2 = 32, then a median troubleshooting request consisting
of 1171 suspect entries requires maintaining a list of ≈ 37000
atomic encryptions each representing three tallies.

8. ZERO KNOWLEDGE PROOFS

8.1 Proofs of Decryption
Certain portions of the protocol can take advantage of zero

knowledge proofs of validity to ensure that the encrypted
data values are not tampered with during aggregation. For
example, during the decryption phase, each keyholder must
divide the public key by some quantity x = gsi and the en-
crypted portion of the data by the quantity y = grsi . If the
previous and next nodes wish to verify that the keyholder is
performing a legitimate decryption operation (and not, for
example, altering the data values), they may combine their
shared knowledge of the pre-decryption and post-decryption
packets to infer what values of x and y were used in the de-
cryption phase. The keyholder can then execute the interac-
tive Chaum-Pedersen proof of knowledge protocol [6] given
in Figure 1 to prove that the values of x and y satisfy the
relation x = gsi and y = grsi , without revealing his private
key si. For practical applications, the Fiat-Shamir heuris-
tic [11] is used to implement the protocol non-interactively
by using pseudorandom hash functions to determine the val-
ues of the random inputs used in the interactive protocol.

8.2 Proofs of Validity
We now address the problem of proving validity of votes.

By “validity” we mean that each vote is syntactically valid
in the sense that it increments at most one component’s to-
tal by one. We do not attempt to guarantee that a valid
vote accurately reflects the actual internal configuration of
the machine, since such a guarantee is impossible to achieve.
Therefore, the goal here is to allow participants to prove that
their contribution E(m) represents the encryption of a mes-
sage m = (m1, . . . , mC) where at most one of the values mi

is 1 and the rest are 0, without revealing the values them-
selves. The generic construction of [10] provides a method
to transform the Chaum-Pedersen zero knowledge equality
protocol of Figure 1 into a zero knowledge proof of validity
for encrypted ballots of this form, at the cost of increasing
communications complexity by O(C). For example, if we
assume for simplicity that C = 1, then the interactive proto-
col of Figure 2 (or its non-interactive Fiat-Shamir analogue)

Prover Verifier
If M = 1 If M = g1

w, r1, d1 ∈ Z w, r2, d2 ∈ Z
x = gr x = gr

y = grs · 1 y = grsg1
x,y−→

a1 = gr1xd1 a1 = gw

b1 = gr1s
�

y
g1

�d1
b1 = gws a1,b1−→

a2 = gw a2 = gr2xd2 c
?
= d1 + d2

b2 = gws b2 = gr2s
�

y
1

�d2 a2,b2−→ a1
?
= gr1xd1

c←− a2
?
= gr2xd2

d2 = c− d1 d1 = c− d2
d1,d2−→ b1

?
= gr1s

�
y
g1

�d1

r2 = w − rd2 r1 = w − rd1
r1,r2−→ b2

?
= gr2s

�
y
1

�d2

Figure 2: Zero knowledge proof that (x, y) = (gr, grs ·
M) where M = 1 or M = g1.

suffices to prove that an encrypted message (gr, grs · gm1
1 )

satisfies either m1 = 0 or m1 = 1, without revealing which
of the two is the case. In general, for a given value of C, the
proof requires transmitting C + 1 quadruplets (ai, bi, di, ri),
and expands the bandwidth requirement of the protocol by
a factor of 2C + 2.

If we transmit a vector of C2 encrypted messages as de-
scribed in Section 7, then we can transmit zero knowledge
proofs of validity for each component of a contributed vec-
tor, and apply the Shamir secret sharing scheme as described
in [10] to pick the challenges c in such a way that the va-
lidity of the vector as a whole can be verified (i.e., no more
than one component contains a vote). The total cost in
bandwidth remains 2C1 +2 times that of the original unval-
idated vector, since the O(C2) cost factor is already reflected
in the size expansion of the original unvalidated vector.

Even if this bandwidth cost is too high to allow all of
the first round data to be validated, it still makes sense
to perform retroactive validation of the top ranking entries
which appear in the second round (Section 9), since the
integrity of these entries is especially crucial to the success
of the troubleshooting request.

8.3 Zero Knowledge Proofs and Clustering
Zero knowledge validity proofs can be combined with clus-

tering by having each cluster member encrypt and sign the
N − 1 shares that it distributes to each of the N − 1 other
members of the cluster. Instead of relying on the shared
keyholders’ encryption key, we require each member to gen-
erate a new encryption key from scratch in order to prevent
malicious keyholders from colluding with the cluster exit
and decrypting the encrypted values later. Since this en-
cryption key is different from the encryption key used in the
homomorphic tally, the cluster member should also include
a zero knowledge proof that the encrypted share has the
same value as the unencrypted share, using the zero knowl-
edge equality proof of Figure 1. The recipients of each share
should then verify that the equality proof is correct—if it is
incorrect, then they should publish both the signed original
share and the signed encrypted share and proof, so that the
other cluster members can see that the proof is incorrect.

After verifying the equality proofs, the recipients forward



the encrypted shares to the cluster exit and the cluster exit
combines the encrypted shares using the homomorphic prop-
erties of the encryption scheme to recover an encrypted ver-
sion of the original raw vote. The owner of this vote can then
provide a zero knowledge proof as in Section 8.2 to demon-
strate that this encrypted value represents a valid vote.

9. SECOND ROUND QUERY
The use of a hash function to digitize all entry values

means that the troubleshooting machine only knows the
hash of the most popular value of a top ranking, root-cause
candidate entry returned by the PeerPressure diagnosis (cf.
Section 2), and not the entry value itself. In order to com-
municate the actual most popular values of the top ranking
entries to the troubleshooter for the purpose of correcting
misconfigurations, we perform another round of queries us-
ing a Chaumian-style mixnet [5] to protect the identities of
the machines having those entries.

The second round uses the same clusters, keyholders, en-
trance and exit nodes as in the first round. For each top
ranking, root-cause candidate entry e, the troubleshooter
queries the network asking for participants whose value for
entry e has a hash value equal to the known most popular
hash value of entry e. Those participants with the matching
hash value and who helped in the first round convert their
actual entry values to integers Ve (using ASCII strings, say),
and Ve will be their contribution in the second round. All
other participants set their contribution to 0. Similarly to
the first round, each cluster member first generates and dis-
tributes random shares of its second round contribution to
every distinct cluster member. Each cluster member then
sums up all the shares that it has received, and encrypts this
subtotal m using the formula

E(m) = (gr, grs ·m),

where r is chosen randomly and gs is the public key it used
in the first round (for the i-th cluster, s = s0 + · · · + si).
If the length of m exceeds the length of grs, then we use
generic transforms such as CFB or CBC to convert a cipher
on a short block to one on a long block. If m is shorter
than grs, then suitable padding such as OAEP is applied to
make it match grs in length. Finally, each cluster member
unicasts its encrypted subtotal to the cluster exit.

In addition, the cluster entrance modifies each old en-
crypted message E(mold) = (grold , grold(s0+···+si−1) · mold)
that it has received from the previous hop to use the new
public key, and computes E′(mold) = (grold , grold(s0+···+si−1+si)·
mold) = (grold , grold·s · mold). As in the first round, the
value E′(mold) constitutes a valid encryption for mold un-
der the new public key gs. The entrance then appends its
own subtotal, encrypted under the public key gs, and passes
the encrypted messages to the cluster exit. The set of all
encrypted messages from a cluster is collected into one large
packet and then passed to the next cluster, using the same
entrance and exit nodes as in the first round.

In order to protect source anonymity, the troubleshooter
should initialize the second round query with a number of
randomly selected encrypted messages which will be dis-
carded upon conclusion of the query.

On the return path, each keyholder decrypts his share
of the secret key from each of the incoming messages as
in the first round, and then passes the messages to the next
keyholder in randomly permuted order. We also require that

each decrypter re-encrypt the messages by transforming an
encrypted message (gr, grs ·m) into an equivalent encryption

(gr+r′ , g(r+r′)s · m) for a randomly chosen value of r′, in
order to prevent other participants from correlating the gr

component of an encrypted message back to its originator.
If the decrypters do not re-encrypt, then the keyholder of
the last cluster in the chain (who is also the first decrypter)
can store the previous cluster’s value of gr and collude with
the troubleshooter to determine which decrypted subtotal
corresponds to the previous cluster’s contribution.

In the final step, the troubleshooter decrypts all the mes-
sages and recovers all the subtotals using its stored value of
s0. It then discards the random messages used to initialize
the second round request, and sums up all the decrypted
subtotals to obtain sume, which is an aggregate of the most
popular entry value Ve. The troubleshooter can compute
the most popular value Ve by dividing sume by the number
of helpers who contributed Ve in the second round, i.e., the
number of helpers whose entry e has a hash value match-
ing the most popular value. This number can be read from
the value distribution histogram that the troubleshooter re-
ceived in the first round. The division result, interpreted as
an ASCII string, will be the most popular value for the top-
ranking suspect entry e, which can then be used to repair
the sick machine.

The effect of this protocol is to implement a simple thresh-
old re-encryption mixnet guaranteeing data privacy, without
providing any integrity checks on the decryption process.
The techniques of Section 8 already protect the integrity of
the first round hash values which determine the PeerPres-
sure diagnosis, and any node attacking the troubleshooter
with a data injection attack will not know the number of
helpers and hence at worse can only induce random faults
in the second round output, which can be easily recognized
and remedied by repeating the query (cf. Section 11.3).

A cluster exit participating in a troubleshooter attack (cf.
Section 3.2) could in principle fabricate all of the public
key data originating in the request path, and collude with
the keyholder to decrypt each member’s subtotal. Together
with the troubleshooter, they will be able to find out the
aggregate value of Ve within their cluster. However, they
still cannot determine which individual member contributed
Ve if there is any. The forking mechanism of Section 11.2
can further reduce this threat of troubleshooter attacks.

10. RESOURCE USAGE

10.1 Bandwidth Overhead
If we assume the parameter values given at the end of

Section 7, then a median first round troubleshooting request
of 1171 entries requires handling about 37000 ElGamal en-
cryptions, each one consisting of two elements of G. The
bit length of a request is therefore directly proportional to
the number of bits needed to represent an element of G.
Traditional ElGamal encryption uses a group G equal to
the multiplicative group of a finite field, for which 512 bits
per group element is considered necessary for minimal secu-
rity, and 1024 bits for good security. At these group sizes,
an FTN request consisting of 37000 encryptions would be
about 4.8 MB in size for a 512 bit group, or 9.6 MB for a
1024 bit group. These estimates do not take into account
any extra overheads which would be incurred by zero knowl-
edge proofs.



Using elliptic curve based ElGamal groups [19], we can
achieve the same level of security using fewer bits. It is
estimated [20] that a 110 bit elliptic curve achieves crypto-
graphic security equivalent to that of a 512 bit finite field,
and a 139 bit elliptic curve is comparable to a 1024 bit finite
field. These group sizes result in FTN request sizes of 1.0
MB with 110 bit elliptic curves, or 1.25 MB with 139 bit
elliptic curves.

For the second round, if we use 1024 bits per suspect entry
and include the 20 top ranking suspect entries in the mixnet
then the total size of each user’s collection of encrypted en-
tries is 40∗1024 bits per user, for a final accumulated packet
size of 1 MB assuming that 200 users participate in the
mixnet. Therefore, the packet size is comparable to the first
round.

The above first round and second round figures only ap-
ply to communications between cluster entrances, cluster ex-
its, and keyholders, and not to intra-cluster communications
within a single cluster. The latter transmissions do not need
encryption because the cluster-based secure multi-party sum
protocol already provides sufficient protection against pri-
vacy attacks. Accordingly, the bandwidth requirements for
communication within a single cluster remain the same as
in [15].

10.2 CPU Overhead
Recall from Section 7 that the tallying phase requires the

troubleshooter to recover, for each suspect value, a list of
C2 = 32 vectors each of the form m = (m1, m2, m3) where
mi ranges from 0 to the maximum number of participants in
an FTN request. If we assume no more than 255 participants
in a request, then each of the values mi ranges from 0 to 255
and we must recover the vector m = (m1, m2, m3) given the
quantity gm1

1 gm2
2 gm3

3 ; this recovery must be done 32 times
per suspect value, or a total of ≈ 37000 times assuming a
median request size of 1171 candidate suspects.

We are mainly concerned with the amount of CPU time
needed to recover these 37000 vectors, since every other
computation required by the protocol is at least an order
of magnitude less time consuming than the recovery step.
Since there are 224 possible values for each m, and 37000
different vectors m to recover, it would be too slow to re-
cover the vectors m by brute force trial and error. Instead
we use the baby-step-giant-step search algorithm from Sec-
tion 5. We compute a lookup table of the values gm1

1 gm2
2 gm3

3

for approximately 220 different values of (m1, m2, m3). Since
our table contains one out of every sixteen possible values of
m, we can recover any given m using at most 16 successive
exponentiations and table lookups, or 37000 values using at
most 37000 · 16 ≈ 220 such operations.

In Figure 3, we present some experimental measurements
for the amount of CPU time used in an actual recovery op-
eration of this scale. Our test program makes use of the
optimized finite field arithmetic routines in the MS bignum
library. We use elliptic curve groups over prime fields, with
field sizes indicated in Figure 3. All tests represent the av-
erages of ten trial runs and were performed on a 3 GHz
Pentium machine.

11. PROTOCOL EVALUATION
We evaluated our protocol based on a real-world friends

network topology. It is a snapshot of MSN instant messenger
(IM) operational data from 2003, with 150,682,876 users.
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Figure 3: CPU time and memory usage in an actual
recovery operation.

The number of friends of an IM user has a median of 9, and
an average of 19, which represents the upper limit of our
cluster size.

11.1 Robustness Against Passive Attacks
Homomorphic encryption protects users’ privacy from pas-

sive attacks where the troubleshooting requests and the con-
tributed data are all legitimate, but friends are “curious”
and might collude and snoop to try to infer other peoples’
data (however without going to the lengths of falsifying in-
formation).

Occasionally, compromised hosts may launch active at-
tacks against their peer friends, in the forms of the trou-
bleshooter attack and the data injection attack (Section 3.2).
The homomorphic encrypted vote tallying can be combined
together with the cluster-based secure multi-party sum pro-
tocol to increase robustness against active attacks, which we
will evaluate in the following subsections.

11.2 Mitigating the Troubleshooter Attack
A compromised host may fabricate a troubleshooting re-

quest and form a troubleshooting cluster to infer its friends’
information. Without colluding, message inspection at the
troubleshooter does not reveal any privacy-sensitive infor-
mation, due to the use of the homomorphically aggregated
network-wide tally in the first round, and the re-encryption
mixnet in the second round. By colluding with the cluster’s
exit, the malicious troubleshooter can determine the aggre-
gate contributions from other honest participants within its
cluster, but will still be unable to determine what an indi-
vidual member contributed.

Based on clustering, we propose an enhancement to fork
the request path, to further reduce the risk of a successful
troubleshooter attack. If two exits are selected for a cluster,
and each cluster member randomly chooses one of them to
unicast the subtotal of the random shares it receives from
other participants, then the troubleshooter would have to
collude with both exits in order to reconstruct the cluster’s
aggregate information. Due to the use of a random walk
based on a probability of forwarding Pf (cf. Section 4.2),
the troubleshooter cannot reduce the likelihood of an honest
exit forwarding its request to other clusters. Hence, the re-
sponse from an honest exit is likely to include the aggregate
information from multiple clusters and not reveal privacy-



compromising details. In the first round, the key holder will
wait until it receives the replies from both exits, and ag-
gregate the encrypted tally contained in both replies using
the homomorphic property. In the second round, the key
holder will wait until it receives both replies, collect all the
encrypted messages contained in both replies into one packet
and mix them by random shuffling.

Assume a malicious troubleshooter forms a cluster of size
G, among which C members are colluding with it. The
probability of a successful troubleshooter attack with only
one exit is P1 = C

G
. If the forking strategy is used, the

probability is reduced to P2 = C(C−1)
G(G−1)

. We have P2
P1

= C−1
G−1

.

If only a small portion of the cluster’s participants collude
with the troubleshooter, then P2 will be much smaller than
P1. Obviously, the more forks we use, the less likely that
a troubleshooter is able to successfully launch the attack,
since it has to collude with more exits.

To quantitatively measure the uncertainty of the malicious
troubleshooter about whether the decrypted tally is from
its own cluster, or has been mixed with contributions from
future hops, we use an information theoretic metric based
on Shannon’s definition of entropy [25]. In the ideal situ-
ation, where there are no colluding participants, the trou-
bleshooter only has the information that under probability
1 − P̄f , the reply only contains the aggregate data values
from its own cluster, where P̄f is the average probability
of forwarding the request from one cluster to another. The
troubleshooter’s uncertainty can be quantified as Hideal =
−P̄f log(P̄f )− (1− P̄f ) log(1− P̄f ). When there are C col-
luders in the participants, the troubleshooter’s uncertainty is
reduced to Hnofork = C

G
·0+(1− C

G
)·Hideal = (G−C

G
)·Hideal.

However, if two exits are selected to fork the troubleshooting
path, the troubleshooter cannot infer whether future hops
are involved unless it colludes with both exits. If only one of
the exits colludes with the troubleshooter, then under prob-
ability P̄f , the honest exit will forward the request to future
hops. We note that the troubleshooter and the colluding
exit cannot determine if future hops are involved from the
reply returned by the honest exit in the first round, since
they are unaware of the actual number of helpers inside
the cluster. However, since every participant contributes
an encrypted subtotal in the second round, and the mes-
sages are concatenated, they may infer that no future hops
are involved by counting the number of encrypted messages
contained in the reply returned by the honest exit in the
second round. To prevent the troubleshooter from gaining
extra information in such cases, we require the honest exit
to randomly select a number of subtotals which sum up to
0, encrypt them and add the encrypted messages into the
second round reply, if it does not forward the request due
to Pf or it encounters a dead end situation. Therefore, with
two exits to fork the request path, the troubleshooter’s un-

certainty becomes Htwofork = C(C−1)
G(G−1)

· 0 + (G−C)(G−C−1)
G(G−1)

·
Hideal + 2 · C(G−C)

G(G−1)
· Hideal = (G−C)(G+C−1)

G(G−1)
· Hideal. The

forking strategy increases the troubleshooter’s uncertainty

by a factor of
Htwofork

Hnofork
= G+C−1

G−1
= 1 + C

G−1
. Figure 4

shows the ratio of
Htwofork

Hideal
and

Hnofork

Hideal
, for different values

of C and G. The closer the ratio is to 1, the more robust
the system is against the troubleshooter attack.

If a compromised host launches a successful troubleshooter
attack by colluding with both exits, together they will be
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Figure 4: The ratio of a troubleshooter’s uncertainty
to the ideal case, with and without forking strategy.

able to determine the collective contributions of the other
honest cluster members. Nevertheless, they will still be un-
able to determine each individual member’s data: the secure
multi-party sum protocol in both rounds ensures that all
other cluster members must collude to reveal the contribu-
tion of an individual member. A cluster member can adjust
its probability to help Ph (cf. Section 4.2) to improve its
privacy in case of a successful troubleshooter attack. In gen-
eral, Ph should take a smaller value for a smaller cluster size
and for better privacy. Although a malicious troubleshooter
may invite fewer friends when forming its troubleshooting
cluster, the honest cluster members can always make the
number of helpers a small fraction of the cluster size, by re-
ducing Ph according to the cluster size, and therefore their
privacy will not be compromised. We note that some con-
figuration data or application ownership information (e.g.,
owning Microsoft Word) is not privacy-sensitive. For those
cases, an FTN node simply sets Ph = 1. In general, an FTN
user can configure policies on how to adjust Ph for data of
different privacy levels.

Since forking at every hop doubles the number of clus-
ters involved in the troubleshooting process, we need to use
an appropriate probability of forwarding to achieve a rel-
atively short path length per branch. Let L denote the
average path length per branch; then the total number of
clusters involved is

PL−1
i=0 2i = 2L − 1 on average. The

probability of forwarding Pf can be determined by equa-
tions (Average number of helpers per cluster) · (2L−1) = 10
and (Average number of helpers per cluster) ·0.5 ·L = 1

1−Pf
.

The first equation is due to the fact that the total number
of samples to be collected should be around 10, in order for
the PeerPressure diagnosis to be effective [28]. The second
equation corresponds to a branch in the forking scenario,
where the average number of times that an exit flips a bi-
ased coin (to determine if it should forward the request or
not) is equal to half of the average number of a cluster’s
helpers, and in total the coin will be flipped 1

1−Pf
times on

average.
In general, we want L to be a small value. A short path

length not only saves communication overhead, but also re-
duces the chance of encountering a compromised peer which
may contribute false configuration data and affect the in-



tegrity of the troubleshooting result. If we set Pf = 0.7,
corresponding to the average path length L = 2, then the
total number of clusters involved would be 3 on average, the
same as an Innocence level3 of I = 2 in [15]. Therefore, a
cluster member can set the probability to help based on its
cluster size to the value corresponding to I = 2, in order to
gather 10 samples.

We simulated our FTN routing protocol with the forking
strategy on the static IM topology, configured with probabil-
ity of forwarding Pf = 0.7. We randomly picked 100 start-
ing nodes as the requester, and set the corresponding Ph

according to the Innocence level of I = 2, in order to obtain
approximately 10 samples. In our simulation, we imposed
an upper bound of 36 on the cluster size to limit the intra-
cluster communication overhead. When we set Pf = 0.7,
the median number of clusters involved is 3, and the me-
dian number of nodes involved is 70. In occasional cases, the
number of clusters involved is more than 16, which incurs
a high communication overhead. The initiator may send a
message via the request path to cancel the request propaga-
tion, after an appropriate timeout period has elapsed. The
timeout should be chosen randomly and kept private to the
initiator itself.

Another friends network characteristic that is of interest
to the forking mechanism is the percentage of clusters that
can only find one exit. In such cases, the cluster mem-
bers will not contribute any sample in order to prevent
the troubleshooter attack. The request can still be prop-
agated through the unique exit. Encountering such nodes
on the forward path will increase the communication over-
head without helping to gather any samples. According to
our computation from the 81790827 IM users with at least
3 friends (we excluded those nodes with one or two friends,
since the former will not be included on the FTN forwarding
path, while the latter will not form a cluster), the probability
of routing to such nodes is 0.0025. Therefore, the average
number of hops that need to be traversed before reaching
such a node is 1/0.0025 = 400, which far exceeds the num-
ber of hops that need to be traversed with the FTN protocol
(typically under 10).

11.3 Mitigating the Data Injection Attack
Ensuring the integrity of the troubleshooting result is chal-

lenging considering the occasional possibility that a friend’s
machine may be compromised, and hence may lie about the
configuration state it has.

An advantage of using homomorphic encryption is that
the key holder can be asked to prove in zero knowledge that
its decryption operation is legitimate, and each cluster’s exit
can require the participants to give zero knowledge proof
of the validity of their vote, to ensure that the encrypted
tally is not tampered during aggregation within the cluster.
However, a cluster’s entrance and exit can still manipulate
the tally on the propagation path, since unlike each cluster
member’s binary valued vote that can be verified in zero
knowledge, the randomly initialized tally can take any inte-
ger value, and hence its validity is hardly possible to verify.
Nevertheless, use of zero-knowledge proof does reduce the
number of nodes that can corrupt the tally from G (the
cluster’s size) to 2 per hop.

To further limit the impact of data injection attacks, a

3Innocence level is defined as a metric in [15] to evaluate
different privacy levels.

troubleshooter can send several requests to disjoint subsets
of friends, enabling each subset to carry out a branch of
troubleshooting, and examine the results returned by all
branches to check if any one of the results is anomalous.
The troubleshooter can filter out maliciously tampered re-
sults if the majority of the branches do not encounter any
compromised nodes. We call this a multiple-branch trou-
bleshooting strategy.

Guaranteeing the integrity of the return values requires
that all samples must be gathered from the troubleshooter’s
own cluster, and every participant must verify the validity
of their contribution to the troubleshooter itself. However,
there are several reasons that this requirement cannot be
met. First of all, it would compromise the troubleshooter’s
anonymity. Furthermore, the PeerPressure algorithm needs
10 samples to be effective. According to our IM topology,
51% of users have fewer than 10 friends, and hence must
collect samples from their friends’ clusters. Finally, a trou-
bleshooter would easily determine the aggregate information
of its immediate friends if a single cluster were used. Involv-
ing several clusters in the troubleshooting process renders
the troubleshooter attack harder to launch.

We assume that there is only an occasional possibility for
a trusted friend’s machine to get compromised, and hence
the percentage of compromised nodes is moderate or small
(e.g., 1% or less). To quantitatively study the effect of using
zero knowledge proof and multiple-branch troubleshooting
on mitigating the data injection attack, we performed simu-
lations on our IM topology under two different attacker sce-
narios, in which we assumed the percentage of compromised
nodes was 1% and 0.1% respectively. For each attacker sce-
nario, we randomly marked the nodes being compromised.
We then randomly picked 1000 honest nodes to send a trou-
bleshooting request to 1 to 10 distinct branches, depend-
ing on the number of friends they may have. We simulated
the troubleshooting cases when different numbers of clusters
were involved on each request path. With zero knowledge
proof, we marked the result returned by one branch as being
corrupted only if the request hit a compromised entrance or
exit on that branch; otherwise, if the request encountered
any compromised node during its propagation, we marked
the result as being tampered. A requester’s troubleshooting
was considered unsuccessful if half or more of its branches
returned a tampered result. Then under each attacker sce-
nario, we computed the probability of a successful data in-
jection attack as the ratio of failed troubleshooting.

Figure 5 compares the probability of successful data injec-
tion attacks with and without zero knowledge proof protec-
tion, for different percentages of compromised nodes, aver-
age path lengths, and the number of branches the requester
selects to send a troubleshooting request. Based on Figure 5,
we have the following observations:

• The risk of data injection is smaller when a single
path is used than two branches. This is because the
multiple-branch troubleshooting is only effective when
the majority of the branches return an untampered
result. If only two branches are used, as long as one
of them encounters a compromised node, the trou-
bleshooting fails since the troubleshooter cannot de-
termine which branch’s result is valid, and since more
nodes are involved compared to using a single branch,
the risk of encountering a compromised node is in-
creased. Therefore, if the troubleshooter has only a
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Figure 5: The probability of a successful data injection attack when the troubleshooter sends out a request
on multiple branches.

limited number of friends (e.g., less than 4), it should
use a single path for troubleshooting.

• When the percentage of compromised nodes is mod-
erate or small (e.g., 1% or less), the multiple-branch
troubleshooting strategy works particularly well to-
gether with zero knowledge proof, since it is less likely
that over half of the branches will be compromised.
The combination is especially efficient at reducing the
risk of data injection when a large number of clusters
are involved on a branch. For example, if there are 1%
compromised nodes and the path length is 8, the prob-
ability of successful data injection attacks on a single
path troubleshooting request without zero knowledge
proof protection is 0.694; the probability is reduced to
0.14 if zero knowledge proof is enabled, and issuing
the request over 6 branches further reduces the risk to
0.058, 8 branches to 0.02 and 10 branches to 0.01.

• In general, involving more clusters increases the risk of
successful data injection attacks. Although a smaller
path length is desirable by the troubleshooter, the
peers in FTN tend to choose smaller values of Ph

to achieve a higher privacy level in case of a trou-
bleshooter attack, which forces the request to traverse
a longer path to gather enough samples. The iterative
helper selection method [15] guarantees probable in-
nocence4 for all the cluster participants in the face of
a successful troubleshooter attack, while achieving a
higher helping rate, and the request propagation ter-
minates after only 2 clusters on average. Then with

4A participant is probably innocent if, from the attackers’
point of view, it appears no more likely to be a helper than
not to be one.

zero knowledge proof, the risk of a successful data in-
jection attack is below 0.04 when the percentage of
compromised nodes is 1%, which is further reduced
to 0.005, 0.002 and nearly 0 if the request is sent to
4, 6 and 8 branches respectively. When 0.1% nodes
are compromised, the risk is below 0.004 and further
reduced to nearly 0 with 4 or more branches.

• Finally, issuing the request over multiple branches in-
curs a higher communication overhead than using zero
knowledge proof, since we only validate the few top
ranking entries that make it through to the second
round. Therefore, a single path is preferable if the
size of the troubleshooting message is large (e.g., the
number of suspect entries is large) and the bandwidth
assigned for troubleshooting is limited.

When the set of possible values for suspect entries is un-
known, we use a second round query to find out the most
popular values of the top ranking root cause candidates
(Section 9). However, the contribution of participants in
the second round is the unknown entry value that we need
to query for, and hence its validity cannot be verified. A
compromised host may thus contribute a false entry value
to corrupt the aggregate sume. The consequence is that
during the process of recovering the actual entry value, the
division will result in a non-integral value, or the resulting
string will not be intelligible (e.g., contains non-ASCII char-
acters). In this way, the troubleshooter is able to recognize
the corruption, and hence discard the invalid result. The
troubleshooter may still send the second round request to a
different subset of friends to seek the entry value.

Our multiple-branch troubleshooting strategy increases
the robustness of the second round query against tamper-
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Figure 6: The probability that attackers may suc-
cessfully tamper with the entry value in the second
round.
ing. By querying multiple branches in the second round,
the troubleshooter is able to obtain the actual entry value
as long as one of the branches does not encounter any com-
promised node. We use our simulation data to calculate the
probability that attackers may successfully tamper with the
entry values returned by all branches in the second round,
as shown in Figure 6.

Our approach efficiently reduces the threat of second-
round tampering for both cases. When there are 0.1% com-
promised nodes, querying 4 branches in the second round
reduces this threat to nearly zero.

12. RELATED WORK
There is much related work in the area of anonymiza-

tion. The random walk approach is also used in FreeNet [7]
and Crowds [23]. FreeNet is a distributed anonymous in-
formation storage and retrieval system. Crowds provides
anonymous web transactions. Other anonymization systems
are based on Chaum’s mixes [5], which serve as proxies to
provide sender-receiver unlinkability through traffic mixing.
Onion routing [14] extends the mixes with layers of onion-
style pre-encryptions. Tarzan [12] implements the mix idea
using a peer-to-peer overlay and provides sender anonymity
and robustness to the mix entry point.

All of the above anonymization techniques address point-
to-point communications. However, our protocol in FTN
involves one-to-many communication, in the form of broad-
casting a troubleshooting request to peers. This broad-
cast should be limited according to the friend relationships,
which is more naturally implemented using a peer-to-peer
overlay. Further, our recursive trust model requires that the

configuration data be transmitted between friends. Fully
anonymous configuration data arriving over a mix network
could not be trusted to be authentic, as only friends can
be trusted not to contribute false and potentially harmful
information about their configurations.

Homomorphic encryption is also used in [4] to allow a com-
munity of users to compute a public aggregate of their data
without exposing individual users’ data. Similarly, the well
known secure multiparty sum protocol enables aggregation
without revealing individual private contributions. How-
ever, these protocols rely on a public bulletin board and
a beacon for random bits, and work only when there is a
known space of choices for the data. In our case, the space
of possible values for a configuration entry is unknown. We
combine those two techniques to address both the passive
and the active attacks efficiently, and we extend them to
support counting the number of distinct values in a set, as
well as revealing the most popular value, while keeping the
individual contributions private.

Our problem of privacy-preserving parameter aggregation
shares much similarity to the problem of secure and privacy-
preserving voting [13, 2, 9, 8] with a few differences. First,
voting requires voters to be authenticated by a centralized
authority, such as the government. Second, our protocol
has an additional requirement of participation privacy; oth-
erwise, privacy of application ownership is compromised.
Third, most voting scenarios involve a fixed, limited number
of voting chances, while our troubleshooting problem does
not. Finally, the scaling requirements of FTN are differ-
ent from those of national elections: while national elections
have at most a few dozen ballot items, and turnaround times
of up to an hour are perfectly acceptable, FTN needs to ac-
commodate several thousand ballot items and turnaround
times need to be minimized.

As an alternative to full-blown homomorphic encryption,
the authors of [17] present a voting system based on cryp-
tographic counters that only support a restricted set of en-
crypted increment and decrement operations. Although the
concept of cryptographic counters is potentially useful in
FTN, the scheme given in [17] is not a good fit for FTN be-
cause of the differing scaling requirements. In particular, the
use of an encryption function based on quadratic residuosity
and the need for L rounds of communication with a public
bulletin board (where L is the number of participants) mean
that the bandwidth usage of this scheme exceeds that of our
elliptic curve based scheme. Likewise, recent work of Kissner
and Song [18] enables private computation of a very general
class of set operations, but does so at the cost of sacrificing
the bandwidth savings afforded by elliptic curves.

Wagner in [26] addresses the problem of compromised
nodes in the context of sensor networks, and describes how
resilient aggregation techniques can be used to limit the
amount of damage a compromised sensor can inflict upon
the aggregate results of the network. Using resilient aggre-
gation in FTN may help when the amount of redundancy
within peers’ data contributions is large. The main difficulty
in applying these techniques directly is that they assume
a trusted base station is available to compute the resilient
data aggregation function; this is infeasible in the peer-to-
peer FTN context where data contributions must be kept
confidential from the other participants.

The authors of SIA [22] also presented a set of techniques
for secure information aggregation in sensor networks. The



integrity of information aggregation is achieved essentially
through authentication which is identity-revealing. In FTN,
we cannot do the same because of privacy concerns.

13. CONCLUSIONS
In this paper, we tackle the key security challenges in

Friends Troubleshooting Network: preserving the privacy
of aggregating peer configuration data and ensuring the in-
tegrity of troubleshooting results.

To guarantee data privacy, we apply the asymptotically
optimal homomorphic encryption scheme from [9] and tai-
lor it to scale with the FTN scenario. Our design has the
novel property that shares of the secret key are assembled
in parallel with the encrypted data. Although the use of ho-
momorphic encryption adds some computational complex-
ity, the only additional user-visible cost of the protocol is
bandwidth, which only has to be paid by the minority of
participants who are routing nodes or keyholders. The com-
putational resources required by our scheme are practical
and represent realistic commitments for a troubleshooting
network in which one responds to direct queries from friends.

To ensure integrity, we combine the selective use of zero
knowledge proofs together with a branching solution where
multiple branches are taken to gather the configuration data
using real-world friends network topology. We find that
when the percentage of compromised nodes is moderate or
small (e.g. 1% or less), our approach can effectively reduce
the risk of malicious data injection attacks to nearly zero.
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