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Abstract— Content sharing is a popular usage of peer-
to-peer systems for its inherent scalability and low cost
of maintenance. In this paper, we leverage this nature of
peer-to-peer systems to tackle a new problem: automatic
misconfiguration troubleshooting. In this setting, machine
configurations from the peers are “shared” to diagnose
the misconfigurations on a sick machine. A key challenge
for such a troubleshooting system is privacy preservation.
To this end, we constructFriends Troubleshooting Network
(FTN), a peer-to-peer overlay network, where the links
between peer machines reflect the friendship of their own-
ers. To preserve privacy, we usehistoryless and futureless
random-walkin the FTN, during which search along with
parameter aggregation are carried out for the purpose of
troubleshooting. Many of our techniques can be applied to
other application scenarios that require privacy-preserving
distributed computing and information aggregation. We
have also identified a number of open challenges that
remain to be addressed.

I. I NTRODUCTION

Today’s desktop PCs have not only brought to their
users an enormous and ever-increasing number of fea-
tures and services, but also an increasing amount of trou-
bleshooting cost and productivity losses. Studies [14][15]
have shown that technical support contributes 17% of
the total cost of ownership of today’s desktop PCs.
A large amount of technical support time is spent on
troubleshooting.

In this paper, we tackle an important troubleshoot-
ing category in which application failures are due to
misconfigurations on the troubled machine. In our prior
work [16], we developed an effective algorithm called
PeerPressurefor diagnosing such misconfigurations.
PeerPressure uses thecommonconfigurations from a set
of helper machines to identify the anomalous misconfig-
urations on the sick one.Searchingfor the right set of
helper machines andaggregatinghelper configurations is
the topic of this paper. Maintaining helper configurations
at a centralized server or database is expensive as it
requires continuous update and maintenance. Further,

such a solution places complete trust on a single entity.
Hence, the privacy of both helpers and troubleshooting
users are of great concern. These reasons lead us to
explore the peer-to-peer approach where peers share their
content at low cost of maintenance and with inherent
scalability. In our setting, the “content” refers to the
machine configurations of the peers. Further, the trust
is distributed among the peers. There are two essential
goals in designing a PeerPressure-based peer-to-peer
troubleshooting system:

• Integrity: We should preserve the integrity of the
troubleshooting results.

• Privacy: We should protect privacy-sensitive con-
figurations for both troubleshooting users and peer
helpers during routing and information aggregation.

Ensuring integrity is challenging because malicious
peers may lie about the applications they own and the
configuration state they have, which can lead to incorrect
troubleshooting results. A machine can be malicious
either because its owner has ill intentions or because
it is compromised by an attacker.

We cope with the ill-intentioned-user problem by
designing well-established social trust into the trou-
bleshooting framework. Today, when encountering com-
puter problems, most people first seek help from their
friends and neighbors. Based on this observation, we
construct aFriends Troubleshooting Network(FTN),
which is a peer-to-peer overlay network, where a link
between two machines is due to the friendship of their
owners. Here, we assume that a pair of friends intend to
help each other out by contributing their own authentic,
relevant non-privacy-compromising configuration infor-
mation to each other for the purpose of troubleshooting.
If the relevant configurations are privacy-sensitive, they
will refuse to supply the information rather than giving
false content. Further, just like in the real world, when
Alice asks her friend Bob a question, if Bob only has
a partial answer or does not know the answer, Bob
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can potentially ask his friend Carolon Alice’s behalf,
especially when Alice and Carol are not friends. This
is exactly how a troubleshooting request recursively
propagates in the FTN. One may quickly conclude
that our system manifeststransitive trust. However, in
our example, because Carol and Alice are not friends,
Carol may provideuntruthful answers to Alice if Alice
asks Caroldirectly. So, more precisely, FTN manifests
recursive trustinstead.

Coping with compromised FTN nodes is an open
challenge. We provide a rough outline for integrity
preservation under such conditions in Section VII-A.

Despite the friendship-based trust in the FTN,privacy
remains a crucial goal in FTN since friends do maintain
privacy from one another. In fact, much configuration
state contains privacy-sensitive information, such as
usernames, passwords, URLs visited, and applications
installed. We achieve privacy through ahistoryless and
futureless random-walkof an ownerlesstroubleshoot-
ing request, during which search as well as parameter
aggregation are carried out for the purpose of Peer-
Pressure troubleshooting. Unlike the traditional peer-to-
peer search and routing protocols which are destination-
driven, the historyless and futureless random-walk in
FTN exhibits a new communication pattern which is
destination-freesearching and routing along with param-
eter aggregation.

For the rest of the paper, we first provide background
on PeerPressure in Section II. We state our privacy
objectives in Section III. In Section IV, we present
our protocol design for privacy-preserving search and
parameter aggregation. We discuss on how FTN achieves
privacy objectives in Section V. Then we discuss the
overhead of our protocol in Section VI. In Section VII,
we list the open challenges remaining in this work. We
compare and constrast our work with the related work
in Section VIII and finally summarize in Section IX.

II. BACKGROUND: PEERPRESSURE

PeerPressure [16] assumes that an application func-
tions correctly on most machines and hence that most
machines have healthy configurations. It uses the statis-
tics from a set of sample machines to identify anomalous
misconfigurations. The distinct feature of PeerPressure
in contrast with other work in this area [17] is that it
eliminates the need of manually identifying a healthy
machine as a reference point for comparison. We have
experimented with the PeerPressure algorithm and a
corresponding troubleshooting toolkit on Windows sys-
tems where most of configuration data is stored at a

centralized registry. Figure 1 illustrates the operations
of our PeerPressure troubleshooter.
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Fig. 1. PeerPressure Troubleshooter

PeerPressure first uses application tracing (with the
“AppTracer”) to capture the configuration entries and
their values that are touched by the abnormal execu-
tion of the application under troubleshooting. These
entries are misconfigurationsuspects. Then, the canoni-
calizer turns any user- or machine-specific entries into
a canonicalizedform. For example, user names and
machine names are all replaced with constant strings
“USER NAME” and “MACHINE NAME”, respectively.
Next, from a sample set of helper machines, for each
suspect entry, PeerPressure obtains the number of sam-
ples that match the value of the suspect entry, and the
cardinality (the number of possible values this entry may
have). PeerPressure uses these parameters along with the
sample set size and the number of suspect entries to
calculate the probability of a suspect entry being the
cause of the symptom. The intuition behind this sick
probability calculation is that the more conformant a
suspect entry is with the samples, the more likely the
entry is to be healthy. The top ranking entries with
regard to the sick probability are diagnosed as theroot-
cause candidates. The sample set can be obtained either
from a database of registry snapshots collected from a
large number of user machines or from a peer-to-peer
troubleshooting community such as the one described in
this paper. We have demonstrated PeerPressure [16] as an
effective troubleshooting method: Our PeerPressure trou-
bleshooter can pinpoint the root-cause misconfiguration
accurately for 12 out of 20 real-world troubleshooting
cases and for the remaining cases, it can narrow down
the root-cause candidates by three orders of magnitude.

III. PRIVACY MODEL AND OBJECTIVES

Before we dive into our protocol design, we first state
our privacy model and objectives.
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A. Private Information

The information being communicated in FTN is PC
configuration data. We denote the complete set of config-
uration data on a machine asD. A subset ofD is identity-
revealing, such as usernames and cookies, which we
denote asDi . The remaining setDr = D−Di may contain
information that compromises privacy whenlinked with
user identity. Some examples of such information are
URLs visited and applications installed. Our privacy
objective is to protectall peers’ privacy byanonymizing
such privacy-sensitive information inDr . Of course, this
forbids Di to be revealed.

B. Attackers

We assume a friendly operational environment where
attackers are simply curious friends. We address com-
promised nodes in Section VII-A, and not else where.

C. Attacks

The ways attackers attempt to obtain privacy-sensitive
information include the following:

1) Message inspection attack: Infer privacy-sensitive
information passively by inspecting the messages
that are passing by.

2) Polling attack: Repeatedly send fake troubleshoot-
ing requests to a friend to obtain and infer his
private information.

3) Eavesdrop on machines on the same LAN.
4) Known topology attack: Discover the FTN topol-

ogy through side channels. This information may
be used to deduce privacy-sensitive information.

5) Gossip attack: Friends may gossip (i.e., collude)
and correlate pieces of information.

IV. PRIVACY-PRESERVINGSEARCH AND PARAMETER

AGGREGATIONPROTOCOL IN FTN

We assume that the FTN bootstraps and maintains
its overlay links in the same way as Gnutella [8] or
Kazaa [10] except that the neighbors are trusted friends’
machines. We assume that each node and its immediate
friends exchange their public keys through a secure out-
of-band mechanism. The neighboring nodes use their
public keys to establish secure channels for troubleshoot-
ing communications.

A. Basic Approaches

We take the following basic approaches to achieve our
privacy objectives.

• Integration of search and parameter aggregation
in one transaction: If the search is a separate step,

which returns the IP addresses of helpers, then the
querier can determine the applications running on
the helpers’ machines. Since application ownership
could be private information, we integrate search
and parameter gathering for PeerPressure into one
step in such a way (next bullet point) that the
parameter values at any point represents a collective
state for a set of friends, and therefore does not
reveal any individual state.

• Historyless and futureless random-walk routing:
To preserve the privacy of the troubleshooting user
as well as node owners on the path, we design
the troubleshooting messages to beownerless, and
not to contain any routing history or future routing
state such as the source and the nodes traversed
or to be traversed. In addition, we make sure that
the troubleshooting state gathered from the past
is aggregatein nature so that individual state is
disguised. Each node on the forwarding path of the
random-walk is either a forwarder which simply
proxies the request or a helper which contributes
its own relevant configurations to the request and
then proxies the request. Each node on the path
keeps per-request state on the previous and next
hop of the request. On the return path, the reply
follows the same way back. The reply contains all
the parameters needed by PeerPressure calculation
at the sick machine.

B. Protocol Details

Figure 2 zooms into a segment of the random walk in
FTN.
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Fig. 2. FTN Search and Parameter Aggregation Protocol: in the
forward path, H, the helper, updates value distribution (not shown)
of each configuration entrye and the number of matchesMe if its
value for e matches the sick valueVs. The forwarder only proxies
the request. On the return trip, the complete PeerPressure parameter
information is passed back to the sick machine following the same
path. (The role of being a helper or a forwarder is only known to the
node itself, and not anyone else.)
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1 H(app.exe) where H is a one-way hash function.
2 Remaining number of samples needed,R
3 For each suspect entrye, EntryName, SickEntryValue, the

number of matchesMe, and the value distribution ofe from
the past samples

TABLE I

FTN REQUEST

1) Creating a Request on the Sick Machine: A
sick machine first filters out the identity-revealing entries
from the suspects, for example by removing all entries
that contain usernames. Then it creates a troubleshooting
request as shown in Table I.

The entry value distributions in field 3 are needed
by the sick machine for determining the most popular
values as legal values for root cause candidates as well as
determining the cardinality of the entry (Section II). The
size of the value distribution depends on the cardinality
of the entry. According to our study in [16], 87% of
Windows registry entries have a cardinality of 1 and 94%
have no more than 2. So, value distributions do not add
significant overhead to our messaging.

To preserve anonymity, the requester initializes the
value distribution with random values.

We identify each request with RqID =
H(n,AllEntryNames), wheren is a nonce generated at
the sick machine, andH is a one-way hash function.

2) Forward Path and Parameter Aggregation:
The sick machine establishes a secure channel with an
available friend chosen at random, then sends it the
troubleshooting request. The friend sends anACK if it
can become either a forwarder or a helper for the request.
If no ACK is received upon timeout, then the requester
tries another friend chosen at random. To avoid routing
loops, if a friend has seen theRqIDof an arriving request
in the past, the friend replies with aNACK.

If a node is involved in forwarding or helping and if
it is capable to help because it also runs the application
under troubleshooting, then the node becomes a helper
with the probability ofPh. WithoutPh, the second-to-last-
hop node can potentially infer information about the last-
hop-node. When the application under troubleshooting is
very popular, with high probability, the last-hop node is
capable to help. Then the second-to-last-hop node can
correlate request and reply to infer the last-hop helper’s
configuration state. Nonetheless, even withPh, a node
can poll its next hop using fake requests withR = 1
to infer information statistically. We make such attacks
more difficult with a bimodalPh wherePh takes a smaller
value for requests with smallR’s.

A helper needs to update the troubleshooting request

accordingly. It incrementsMe, the number of matches for
each suspect entrye, when the helper’s value matches
that of the sick’s. And the helper updates the value
distributions in the request based on its own respective
entry values. (With our trust model, uncompromised
FTN nodes do not lie about these values (Section I);
and we address compromised nodes in Section VII-A).
Then, the helper decrementsR. If R is positive, the helper
proxies the request to one of its friends.

Each node on the forwarding path must record the
RqID, the request arrival time, the previous and next
hop friend along withR. There is timeout associated
with each request.

3) Last Hop and Return Path: If R becomes 0, the
node is on the last hop. The last-hop node waits for a
random amount of time, then sends the reply back to
the previous hop. Without the random wait, the second-
to-last hop node could know that the reply comes from
the last hop, then correlate theMe’s in request and reply
to infer the last-hop node’s values. It is possible that a
curious friend launches a polling attack (Section III) with
R= 1 and conducts statistical timing analysis to infer its
next hop’s private information. To make such statistical
attacks more difficult, the random wait can be uniformly
drawn from a large range, e.g., 15 hops.

The reply follows the request path back to the sick
machine. The sick machine first subtracts the random
initialization from the value distributions. Then it per-
forms PeerPressure diagnosis.

V. ACHIEVING PRIVACY OBJECTIVES

The historyless and futureless random-walk along with
integrated search and parameter aggregation counters
the message inspection attacks and polling attacks (see
Section III-C). The use of secure channel on each
overlay link counters the eavesdropping attack. The use
of Ph makes the potential inference in known topology
attack difficult. We can mitigate most gossip attacks
with the use ofPh along with historyless and futureless
routing, except in one scenario: If a victim has two
gossiping friends, whenever the victim “helps” with
troubleshooting and is en route between the two, its
information could be inferred by the two gossipers. A
potential technique for reducing the impact of this attack
is random perturbation which is discussed in Section VII-
B.

VI. RESPONSETIME AND BANDWIDTH OVERHEAD

In FTN, the troubleshooting response time is dictated
by the number of hops a troubleshooting request and
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its reply traverse, which isN/Ph ∗ 2 where N is the
number of samples needed. WhenN = 10, PeerPressure
is already effective; nonetheless, the larger theN is, the
better the root-cause ranking becomes in general [16].
The response time can be improved with fan-outs and
by gathering a fraction of samples on each branch.

In terms of bandwidth overhead, for the Windows
applications we evaluated in [16], there is a median
of 1171 suspect entries. So, according to Table I, our
troubleshooting messages are about80 KB.

VII. O PEN CHALLENGES

A. Integrity in the Face of Compromised FTN Nodes

Though friends may be trustworthy, their computers’
behaviors do not necessarily carry out their owners’
intentions when they are compromised by attackers.
To defend integrity when some FTN nodes may be
compromised, all nodes on the request path remem-
ber the troubleshooting request (see Table I) that they
forward. Then, on the return trip, each node checks
these invariants: the additional number of matches for
each suspect does not exceedR, the recorded remaining
number of samples needed; for each suspect, the count in
value distributions in the reply did not decrease; and the
sum of all counts in the reply minus the sum of all counts
in the request equals toR. Only when these invariants
are maintained, a node forwards on the reply. Ensuring
absolute integrity here remains an open challenge.

Another serious attack is thatonecompromised node
can bring in his gang of malicious friends which could
all be himself in the form of the Sybil attack [5]. A
large majority of “Sybils” impact the troubleshooting
result without violating any integrity invariants men-
tioned above. One way to counter this attack is to
initiate multiple troubleshooting requests, hoping that a
majority of them will return with correct troubleshooting
results, and therefore weed out the incorrect ones that
have compromised nodes on the path. The earlier a
compromised node appears on a path (i.e., the higher
the R is), the more room the compromised node has
to sway the final troubleshooting result. In such cases,
using a high fan-out (Section VI) reducesR, and limits
the compromised node’s influence. Further analysis is
needed on the number of requests needed given the
positions of the compromised nodes.

B. Random Perturbation for Gossip Attack

In a gossip attack (Section III), two common friends
can collude to infer a third friend’s private information
by noticing the changes toMe. To reduce the impact

of this attack, it might be feasible for each node on the
path to apply random perturbation [1] toR, the remaining
number of samples required,Me, the number of matches,
and value distribution updates. For example, instead of
incrementingMe for Suspecte when a helper has a
matching value, the helper adds a random noise toMe

to confuse the gossipers. Nonetheless, it is unclear how
such random noise affect the final troubleshooting result
especially when the total number of samples is small.
We are investigating the applicability of this technique.

C. Ownerless Troubleshooting Request

Removing identity-revealing information from the
original troubleshooting request is non-trivial since en-
tries that are not identity-revealing individually could be
combined to identify a user. Systematic recognition of
all identity-revealing vectors of configuration entries is
an open challenge.

VIII. R ELATED WORK

There is much related work in the arena of anonymiza-
tion. Our chain style of historyless and futureless
random-walk is similar in spirit to that of FreeNet [4]
and Crowds [13]. FreeNet is a distributed anonymous
information storage and retrieval system. Crowds is
for anonymous web transactions. Chaum’s approach to
anonymization is based on the use ofmixes[3] which
serve as proxies to provide sender-receiver unlinkabil-
ity through traffic mixing. Onion routing [9] extends
the mixes with layers of onion-style pre-encryptions.
Tarzan [6] implements the mix idea using a peer-to-peer
overlay and provides sender anonymity and robustness
to the mix entry point.

All of the above anonymization techniques address
point-to-point communications. However, our protocol in
FTN takes the form of one-to-many communications and
is destination-free, since a sample set is drawn from the
peers. As a result, nodes on the path must look into the
packet content and potentially modify it before proxying
it forward. Hence, our application additionaly requires
user privacy not being compromised in this process of
state aggregation.

Our problem of privacy-perserving parameter aggrega-
tion shares much similarity to the problem of secure and
privacy-preserving voting [7][2] with four distinctions.
First, voting requires voters to be authenticated by a
centralized authority, such as the government. Second,
our protocol requires participation privacy additionally;
otherwise, the privacy of the application ownership is
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compromised. Third, unlike some voting scenarios where
there are limited number of voting candidates, our prob-
lem scenario does not have such a limit. Lastly, while
voting requires precise vote tallies, PeerPressure uses
the statistics which allows small amount of inaccuracies;
therefore, random perturbation could potentially be used
for privacy in our scenario.

The authors of SIA[12] presented a set of techniques
for secure information aggregation in sensor networks
with the presence of malicious sensors and aggregators.
The integrity of information aggregation is achieved
essentially through authentication which is identity-
revealing. In FTN, we cannot do the same because of
the privacy concerns.

ACME [11] is a scalable, flexible infrastructure for
monitoring, analyzing, and controlling Internet-scale sys-
tems. ACME collects, aggregates and reduces nodes’
health data as the data is routed through a peer-to-peer
network, but it does not address privacy or integrity.

IX. CONCLUDING REMARKS

In this paper, we introduce automatic troubleshooting
as an interesting application that can also benefit from
the content-sharing nature of peer-to-peer systems while
being legal at the same time. We leverage an automatic
troubleshooting algorithm, PeerPressure [16], which uses
statistics among the peers to diagnose the anomalous
misconfigurations on a sick machine. For a privacy-
preserving PeerPressure-based peer-to-peer system, we
construct a Friends Troubleshooting Network (FTN)
which is a peer-to-peer overlay network where the links
between peer machines reflect the friendship of their
owners. The FTN nodes manifestrecursive trustrather
than transitive trust. In FTN, we usehistorylessand
futurelessrandom-walk for integrated search and param-
eter aggregation for PeerPressure. We believe these tech-
niques can be applied to other application scenarios that
require privacy-preserving distributed computing and in-
formation aggregation. There is much future work ahead
of us in making FTN a reality. Integrity preservation in
the face of compromised nodes, the feasibility of random
perturbation in this setting, and recognizing identity-
revealing configuration entries remain open challenges.
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