Privacy-Preserving
Friends Troubleshooting Network

Qiang Huang Helen J. Wang Nikita Borisov
Princeton University Microsoft Research University of California, Berkeley
ghuang@princeton.edu helenw@microsoft.com nikitab@cs.berkeley.edu

Abstract— Content sharing is a popular use of peer-to-peer Ensuringintegrity is challenging because malicious peers
systems because of their inherent scalability and low cost of may lie about the applications they own and the configuration
?eﬂrtiggtlﬁé 'PO t?;?:k?:p;r’r] ;"V';‘ E‘é%rlzgf_ ?&%ﬁ?ﬁﬁ? n‘q’}‘sggﬁlfi'é%' state they have, which can lead to incorrect troubleshooting
ration troubleshooting. In this setting, machine configurations resu!ts_. A machlne can be mlaI.|C|0us elther because its owner
from peers are shared to diagnose misconfigurations on a sick has ill intentions or because it is compromised by an attacker.
machine. The key challenges are preserving privacy of individual We cope with the ill-intentioned-user problem by designing
configuration data and ensuring the integrity of peer contri- well-established social trust into the troubleshooting frame-
butlonsl.(To this end, we construc: theFrlenclj(s TLoubIers]hciotll(ng work. Today, when encountering computer problems, most
Network (FTN), a peer-to-peer overlay network, where the links . ’ Lo . !
between(peer) mae:hines Fr)eflect the ¥riendship of their owners. peoplg first seek. help from their fr|ends and neighbors. .Based
Our FTN manifests recursive trustrather than transitive trust. ON this observation, we constructRiiends Troubleshooting
To achieve privacy, we use the general scheme of kistoryless Network (FTN), which is a peer-to-peer overlay network,
and futureless random-walfor routing, during which search is where a link between two machines is due to the friendship
carried out simultaneously with secure parameter aggregation f their owners. We assume that friends will either provide

for the purpose of troubleshooting. Our design has been guided . . L . :
by the characteristics of a real-world friends network, the MSN authentic configuration information to each other, or, in cases

Instant Messenger (IM) network. We have prototyped our FTN Where configurations are privacy sensitive, refuse to supply
system and analyzed the tradeoff between privacy and protocol information, rather than giving false content.

efficiency. In the real world, if Alice asks her friend Bob a question to
which Bob does not know the complete answer, Bob may ask
his friend Carolon Alice’s behalf Troubleshooting requests
Today’s desktop PCs have not only brought to their useirs the FTN are recursively forwarded to friends of friends
an enormous and ever-increasing number of features andhe same way. One may quickly conclude that our system
services, but also an increasing amount of troubleshootinganifeststransitive trust However, if Alice and Carol aren't
cost and productivity losses. Studies [15], [16] have showriends, Carol may provide untruthful answers if Alice were to
that technical support contributes 17% to the total cost etk hemirectly, but truthful ones when asked by Bob. Because
ownership of today’s desktop PCs. A large amount of techniaafl this, we say that FTN manifestecursive trustinstead.
support time is spent on troubleshooting failures, many of Despite the friendship-based trust in the FTpivacy
which are caused by misconfigurations. remains a crucial goal: while friends can be trusted not to
In this paper, we address the problem of privacy-preservingrovide false information, they may be curious about the con-
peer-to-peer misconfiguration diagnosis. We build on our priégguration of their peers, and such configurations may contain
viously developed algorithm for automatic misconfiguratioprivacy-sensitive information. In our position paper [18], we
troubleshooting, calledPeerPressurg17]. PeerPressure usessketched an FTN design which tries to achieve privacy through
the commonconfigurations from a set of helper machinea historyless and futureless random-walkan ownerlesgrou-
to identify the anomalous misconfigurations on the sick onbkleshooting request, during which search as well as parameter
With real-world troubleshooting cases as evaluations, we haaggregation are carried out for the purpose of PeerPressure
shown the effectiveness of the approach. To carry out PeerPitesubleshooting. The design was not robust against a number
sure diagnosis, we need to gather statistics from a sample geprivacy-compromising attacks. In this paper, we develop
of helper machines. In our position paper [18], we advocatedr original idea into a full-fledged design and system. Be-
taking the peer-to-peer approach in searching for helpers aralise of the unique privacy and integrity requirements of our
gathering statistics. As compared to a centralized database,ghablem, previous techniques for anonymity and private data
peer-to-peer approach provides low cost maintenance of up-aggregation cannot be readily applied.
date helper configuration samples and distributed trust. How-Our design is guided by the operational MSN Instant
ever, PeerPressure-based peer-to-peer troubleshooting pdsessenger (IM) friends network data. With the IM data, we
interesting challenges in preserving the privacy of both tlenalyze the tradeoffs between privacy and efficiency. We have
troubleshooting users and peer helpers, as well as the integptgtotyped the FTN system with which a user can diagnose
of the troubleshooting results. misconfigurations in about a minute while achieving a high

I. INTRODUCTION

privacy level for all participants. that match the value of the suspect entfy, the cardinalityC,
Coping with compromised FTN nodes remains an opdthe number of distinct values for this entry among the sample
challenge. We provide no mitigation mechanisms other thaet), and the most popular value for the entry. PeerPressure
those already presented in [18]. uses these parameters along with the sample set size and
For the rest of the paper, we first provide backgrounttie number of suspect entries to calculate the probability
on PeerPressure in Section Il. Then, we state our privagly a suspect entry being the cause of the symptéin:=
objectives in Section Ill. In Section IV, we explain ourNJrcﬁﬁgf&ﬂ(FI where N is the number of samples and
protocol by reviewing the previous design (Subsection IV-A)s the number of suspects. The intuition behind this probability
describing attacks against it (Subsection IV-B), and introducalculation is that the more conformant a suspect entry is
ing a cluster-based secure multiparty parameter aggregatwith the samples, the more likely it is to be healthy. The top
scheme and various other enhancements and optimizaticesking entries with regard to this probability are diagnosed
(Subsections IV-C, IV-D, IV-E). Using the MSN IM data,as theroot-cause candidatesThen, the troubleshooting user
we present an evaluation of our design, including analysian use the collected, most popular values for corrections.
and simulation of the trade-off between privacy and protocdhe sample set can be obtained either from a database of
efficiency in Section V. We describe our prototype FTN systemegistry snapshots collected from a large number of user
and its performance in Section VI. We compare and contrasachines or from a peer-to-peer troubleshooting community
our work with the related work in Section VII and finallysuch as the one described in this paper. We have demonstrated
conclude in Section VIII. PeerPressure [17] as an effective troubleshooting method: our
PeerPressure troubleshooter was able to pinpoint the root-
cause misconfiguration accurately for 12 out of 20 real-world
PeerPressure [17] assumes that an application operatggibleshooting cases and for the remaining ones, it narrowed
correctly on most machines and hence that most machifggyn the number of root-cause candidates by three orders of
have healthy configurations. It uses the statistics from a $8hgnitude.
of samplehelper machines that run the same application to
identify anomalous misconfigurations. The distinct feature of [11. PRIVACY MODEL AND OBJECTIVES
PeerPressure in contrast with other work in this area [19]gefore we dive into our protocol design, we first state our
is that it eliminates the need to manually identify a healthyyiyacy model and objectives.
machine as a reference point for comparison. We have exper-
imented with a PeerPressure-based troubleshooting toolkit An Private Information

Windows systems where most of configuration data is storedrhe jnformation being communicated in FTN is PC con-
in a centralized registry. Figure 1 illustrates the operation ﬁ&uration data. We denote the complete set of configuration

Il. BACKGROUND: PEERPRESSURE

our PeerPressure troubleshooter. data on a machine aB. A subset ofD is identity-revealing,
Registry Entry Suspects such as usernames and cookies, which we denofe; AsThe
Entry Data canonicalizer filtering turns any user-specific entries into a
HKLM\Software\Msft\.. On . R . ..
RV —_ canonicalizedorm (Section IlI). The remaining sé?. = D—
HKCUSASoftware\... | nul D; may contain information that compromises privacy when

linked with user identity. Some examples of such information
PZSF;]IL?;:]Z'G' are URLSs visited and applications installed. Our privacy ob-
Communit jective is to protectall peers’ privacy byanonymizingsuch
— privacy-sensitive information i,.; of course,D; must never
(& (e be revealed.

Canonicalizer

Troubleshooting Result

Entry Prob.

In addition to the configuration data, we aim to protect

—
HKLM\Software\Msft\... | 0.6 Statistical DB of Registry
AKLMSystemiSetupl.._| 02 A Snapshots the identities of the sick machine and the helpers. In some

HKCU\%\Software\... 0.003

cases, the mere fact that one is running a particular application

may be privacy-sensitive; in our protocol, we hide whether

each participant is the sick machine, a helper, or simply a
PeerPressure first uses application tracing (with the “Apferwarding node that does not run the application.

Tracer”) to capture the configuration entries and values that

are touched by the abnormal execution of the applicatiéh Attacks

under troubleshooting. These entries are misconfiguratisn ~ We assume an operational environment where participants

pects Then, the canonicalizer turns any user- or machingre honest-but-curious and never lie about their configuration

specific entries into @anonicalizedform. For example, user information. We also assume that attackers do not know the

names and machine names are all replaced with constant

strings “USERNAME” and “MACHINE _NAME”, respec- 1O_f course, proper roll-back mechanisms are needed if a root-cause

. . candidate is not actually the root cause (when the correction does not remove

tively. Next, from a sample set of helper machines, for eagft sick symptom).

suspect entry, PeerPressure obtains the number of sample$Finding all identity-revealing entries is an open research question.

PeerPressure
Fig. 1. PeerPressure Troubleshooter

FTN topology information. While it is possible to obtain into one step in such a way (next bullet) that the parame-
friendship topology from side channels, there is much uncer- ter values at any point represent the collective state for a
tainty on which friends one trusts to troubleshoot with and set of friends, and therefore do not reveal any individual
which ones of them are online. The ways attackers attempt to state.
obtain private information include the following: « Historyless and futureless random-walk routirig pre-
1) Eavesdrop on machines on the same LAN serve the privacy of the troubleshooting user as well
2) Message inspection attack: Infer privacy-sensitive infor- S node owners on the search path, we design the
mation by passively inspecting the messages that are troubleshooting messages to benerlessand not to

passing by. contain any routing history or future routing state, such
3) Polling attack: Repeatedly send fake troubleshooting @as the source or the nodes traversed or to be traversed.
requests to a friend to infer his private information. In addition, we make sure that the troubleshooting state
4) Gossip attack: Friends may gossip (i.e., collude) and 9athered from the past iaggregatein nature so that
correlate pieces of information. individual state is disguised. Each node on the forwarding
path of the random-walk is eitherfarwarderthat simply
C. Existing Tools proxies the request, or laelperthat contributes its own
There are many existing tools for achieving anonymity or relevant configurations to the request and then proxies the
request.

for private data aggregation. We briefly explain why such tools
are not readily applicable to our problem; a more detailed For the rest of the section, we first review our previous
review of the related work is in Section VL. design from our position paper [18] and the possible attacks
Anonymity systems, such as mix networks [4], allow to sen@gainst it in Subsections IV-A and IlI-B. We then present our
messages while hiding their origin. Forwarding configuratiopfotocol enhancements in Subsections IV-C, IV-D, and IV-E.

over a mix network would preserve privacy of the participants, previous Design
as it would dissociate the contents from the users identities

However, it would violate our integrity model, as recursiv
trust is achieved only when friends communicate directly wi
each other. A mix network would leave no way to verify wher

the data came from and thus leave open the possibility Subleshooting: 2) a random nondéeql D identifying the

malicious configuration data. S .
. . request; 3) the value distribution (or histogram) of each suspect
Another way to preserve the anonymity of the contributors . , ;
: . ; , entry e — a list of values and the vect@rount. (i) counting
is to use a private aggregation or voting protocol based i!‘]

1) Creating a Request on the Sick Machidesick machine

rst filters out the identity-revealing entries from the suspects.

hen it creates a troubleshooting request which contains
The name of the application executable that is under

A . : e occurrences of each valde the vector size increases
a secure multi-party sum or homomorphic encryption [2 . i
. ver time as new values are encountered along the way; 4)
However, these protocols work only when there is a kno

space of choices for the data. In our case, the space of poss| ?épammg numbe_r of samp_les needédThe goal of the FTN
) . : otocol is for a sick machine to obtain the aggregate value
values for a configuration entry is unknown, and we mus

. L o ||stributions for all suspect entries. With the value distribution
determine the number of distinct values (cardinality) as we ; L
of each entry, the sick node can extract the cardinality, |,

as the most popular value, while not revealing which val
belongs to which participant. To solve this problem, we defiﬁge number of matches\{.), and the most popular value to

:carry out the PeerPressure diagnosis.
a new aggregation scheme, described in Section IV-E, Whlcﬁ.l_O oreserve source anonymity, the requester randomly
uses a secure multi-party sum as a building block. s R ’ o
initializes the value distribution and remaining number of
IV. PRIVACY-PRESERVING SEARCH AND PARAMETER :'sa_mples need_ed. However, careful rga_c{er§ may realize that
AGGREGATIONPROTOCOL INFTN |t. |s_not_ poss_|ble to do the rand.om initialization for value_
) o distributions since space of plausible values for each entry is
The FTN is an overlay network similar to Gnutella [9] Ofnost likely unknown. This was one of the unresolved issues
Kazaa [11]; however, overlay links are made only to trustef our previous paper. In this paper, one of our enhancements
friends’ machines. We assume that friends are able to excha@ggction IV-E) makes random initialization possible.

public keys out of band and use them to establish securey) parameter AggregationThe sick machine establishes a

communication channels. _ secure channel with an available friend chosen at random and
We take the following basic approaches to achieve Ogends it the troubleshooting request. The friend sends@R
privacy objectives in the FTN: if it can become either a forwarder or a helper for the request.

« Integration of search and parameter aggregation in on# no ACK is received upon timeout, then the requester tries
transaction If search is a separate step, returning thanother friend chosen at random. To avoid routing loops or
IP addresses of helpers, then the querier can determd@uble-counting, if a friend has already seen i I D of an
the applications running on the helpers’ machines. Sineeriving request in the past, the friend replies witiValC K.
application ownership could be private information, we A friend that receives a troubleshooting request and runs
integrate search and parameter gathering for PeerPresshesapplication under troubleshooting only becomes a helper

some of the time, with probability?,. If it always chose D. Enhancement 2: Countering Gossip Attacks with Cluster-
to participate, the second-to-last-hop node could infer inforg
mation abou.t thg last-hop node. .Whgn the appplpatlon underWe mitigate the gossip attacks through a cluster-based se-
troubleshooting is very popular, with high probability, the last- . ; .
. . cure multi-party sum scheme as illustrated in Figure 2. When a
hop node is capable to help. Therefore, the previous node can . : . o
node receives a troubleshooting request, instead of contributing

compare the request and reply and isolate the last-hop helper L . .
configuration state. ‘teo %he request individually, it forms &oubleshooting cluster

. . from its immediate friends and initiates a secure multi-party
A helper needs to update the troubleshooting request; for L S .
L . S sum procedure that blends individual contributions into an
each suspect entry, it incrementsCount.(i) wheres is its

. e s, aggregate that encapsulates the contributions from both the
own value fore (extending the value distribution vector as L
i cluster and the past hops. The initiating node serves as the
necessary ifi is not already represented). Then, the help€g
: o : uster entranceA separate cluster member must be selected
decrementsR. If R is positive, the helper proxies the reques . - e
to one of its friends as thecluster exitfor receiving the aggregate; in this way, no

If R becomes 0, the node is the last hop. The last-hop no%lggle r.10de kpows the aggregate contrlbutlon- of a cluster.
In this section, we assume that each entris known to

waits for a random amount of time, then sends the reply back | }
to the previous hop. Without the random wait, the second-t ave only a few possible values (e.g. trge or false); t.he? next
last hop node could know that the reply came from the last h ction explal_ns how to ghange our algorithm when this is not
and compare th&'ount.(i)’s in request and reply to obtain 'et f:sst_e' Th:cs assum?_nog aIIO\;vs U?Cto repr‘es]?nt thehvalue
the last-hop node’s values. The reply follows the request pdligtrieution of e as a fixed vector oiCount.(i) for eac

back to the sick machine. The sick machine first subtraceﬁgirye anq elac(:jh vatlr;mé of e. Thet contlrlbug(_)r; %f tthe c}lusterth
the random initialization from the value distributions; then ien r:?mce Includes the aggregate value distribu |on_ rqm e
performs PeerPressure diagnosis previous hops. Members who do not run the application or

Each node on the forwarding path must record &gl D, who choosi no"i/lto hslp aci]ordr:n?m_\lllvnl (iotr;]trlbutet the Ia” ¢
the request arrival time, along with the previous and next h58roes vector. Members who help will set the vector elemen

friend. There is a timeout associated with each request. ncgrrespond{ng to their value to 1, and O's for the rest. .
node does not receive a valid reply when the timeout expires,] N€ detailed steps of our cluster-based secure multi-party
or if it must go offline, it sends backwards the reply includin§Um Procedure are as follows (see also Figure 2):
the aggregate of past samples up to itself and also notifies itd) Random share generation and distributideach cluster
next hop to terminate its waiting status. We analyze the proper participant generate&’ random shares for its contri-
timeout values in Section VI. bution vector, whereG is the cluster size. It then
distributes each share to a distinct cluster member. The
contribution vector also includes a vallig, which is 0
We now present the possible privacy-compromising attacks or 1 depending on whether the member decided to help
against our previous design, as follows: or not.
« Gossip attacksA helper directly contributes its relevant 2) Cluster exit electionThe cluster head assigns all clus-
configuration to the request. If the helper's previous ter members (excluding itself) sequential numeric IDs,
and next hop friends collude, they can determine its Starting at 0. Each cluster membeselects a random

B. Attacks Against Previous Protocol

configuration information. noncen; and broadcasts a commitment [12] to it. After

« Polling attacks Even with probabilistic helping, a curious receiving all commitments, the members broadcast their
friend may repeatedly send fake troubleshooting requests nhonces. Each member verifies all the commitments and
to its next hop withR = 1 and determine the last-hop computes the sum = Zf:ol n;, and then picks the
contribution by comparing the request and reply. Even ~ member with/D = n mod G — 1 to be the cluster
with a random wait at the last hop, the attacker can still exit. This results in a fairly chosen random number in the
conduct a statistical analysis to guess when the next hop range0...G — 1. As an optimization, cluster members
contributes to the request. who have no friends outside the cluster can indicate this

)) o upon accepting the invitation; those members will be
C. Enhancement 1: Countering Polling Attacks by Eliminating excluded from the choice of potential cluster exits to

R avoid dead ends.

To mitigate the polling attack, we avoid specifying the 3) Unicast subtotal to the cluster exiEach cluster member
remaining number of hop®& explicitly. Instead, eaclhelper sums up all the shares it has received from others and
node only proxies the request further with a probabiliy,= unicasts its subtotal to the cluster exit.

1 —1/N, where N is the total number of samples needed; 4) Exiting the clusterThe cluster exit sums up the received
otherwise it becomes the last hop. This resultsVirhelpers subtotals of contribution vectors from all participants.

being involved on average. This probablistic proxying makes This aggregate is the value distribution from the past up
routing entirely historyless. Nodes that do not help always to the cluster exit. The exit also sums up the received
forward the request. shares ofl/, to obtain} ., V3, which is the number of

cluster members that were able to help. With probability 2) Iterative Helper Selection:The adaptive method of
p=¢"" the cluster exit further proxies the request tehoosingP;, will achieve probable innocence (i.e. when fewer
one of its friends, which becomes a cluster entrance #fan half of the members become helpers; see Section V-C)
the next cluster hop. While it is possible to turn thavith high probability. However, to achieve this, small cluster
cluster exit into a cluster entrance for the next cluster, wizes need to have, near zero, thereby increasing the length
observe from our MSN IM data (Section V-B) that suclef the number of clusters that need to be traversed to collect
adjacent clusters contain 14.15% overlapping membeesjough data, especially when the average cluster sizes are
reducing the value of the next clusters contribution. small. As an alternative, we present an iterative scheme that
During cluster formation, a friend can decline the clustearChlgves. the same privacy guarantees while collecting more
A L . ._contributions from neighbors.
invitation if its friendship with the cluster entrance is consid- : L
: e .—._In this scheme, before any data aggregation is performed,
ered private or if it has already seen the request. The decision . .
L ' very cluster member, regardless of whether it runs the appli-
about whose invitation to accept must be pre-configured by R . -
. . cation or not, randomly decides whether to participate or not
FTN node owners. Also during cluster formation, the cluster

o . L nd sets/, to O or 1. It decides to participate probabilify,
entrance distributes the public keys of all cluster part|C|panV_vsniCh is close to%. Then the cluster performs a multi-party

(that have accepted the invitation) to each of them for their m to add all thd’, values count the number of participating

future secure communications; this is necessary because he . .
. . . members. If this sum includes more than half the cluster
cluster participants may not be friends with one another an . L o
; . members, the cluster members discard their original decisions

thus may not know each other’s public keys.

nd randomly pick a neWw,, repeating this entire step. This
The cluster exit needs to record the cluster entrance as yp P g P

. . . Bcess is repeated until fewer than half the members have
previous hop for the return trip of the troubleshooting reque

X 1~ =gecided to participate.
The new cluster entrance records the previous cluster exit as it o this. the aggregation proceeds as before, except instead
previous hop. The other cluster members only need to recq; ’ ’

.)) using V;, to decide whether to participate, only those
the ReqI D to avoid loops in case they receive the same request ibers who decided to participagmd are running the

in the future.)] . application will contribute to the aggregate. All other members
One may wonder whether it would be possible to just usg| contribute zero to the overall aggregate.
a single, large cluster. First of all, a large cluster incurs a |y the first step, all the members pick 14, regardless
heavy cost because the Comr121unication cost of the multi-pagy \whether they are running the application or not. This
secure sum procedure is Of) where(is the cluster size. \yay the count of participating members does not reveal
Also, a single cluster would not sufficiently hide the |dent|t)ény information. In the second step, fewer than half the
of the sick machine, who would be the cluster head. Finall,empers participate, hence even if the cluster-wide aggregate
we must adhere to our recursive trust model by inviting onlg jntercepted, it is not known whether each member runs the
immediate friends to join the cIuster._Accordlng to thg MSNpplication with a probability greater than one-half.
IM user data (Section V-B), the median number of friends a The probability P, will depend on the size of the cluster,
user has is 9. (some of which may not run the apphcatlon unqggt as with P,. However, in generaP, can be larger than
troubleshooting or may not be willing to help); since we neeg, ' since too many members participating results in an extra
at least 10 helper samples for PeerPressure diagnosis [17lo@hd of communication rather than a privacy compromise.

single cluster is simply not sufficient. The choice ofP, involves a trade-off: with aP, too high,
1) Adaptive P, for Better Privacy in case of Cluster En-the first step will involve a high number of retries, increasing
trance and Exit Collusions: the communication cost. IP, is too low, few members will

Our scheme achieves very good privacy when there is participate in each cluster, which means that more clusters will
collusions between the cluster entrance and the exit. Howeuse, needed to collect enough samples. We explain our choice
when they do collude, they will obtain the aggregate contribef P, in Section V.
tion of the cluster. The smaller the cluster is, the less privacy3) Countering Sybil Attack with Threshold-Driven Helping:
can we achieve with our cluster-based secure multi-party s#mcurious cluster entrance may launch a Sybil attack [6]
algorithm. In particular, if all (or most) of the cluster memberagainst its friends by including in the cluster a large number of
decide to help, then an attacker can guess with high certaifighost” friends who are just the cluster entrance itself. Then,
that a given cluster member runs the application. To this ensith high probability, the cluster exit will be elected to be
we allow cluster participants to adaptively choose thejr one of the ghost friends, resulting in successful collusion.
according to the cluster size and the privacy level they desif@ne countermeasure is that a cluster member only helps
In general, for smaller clusters or for better privacy guaranteeghen there are a threshold numb&r common friends of
we must use a lower value aP,. Of course, smaller?, the cluster member and the cluster entrance in the cluster.
will increase the number of nodes that must be queries fdfith this threshold, it takes at lea§t colluders to expose
each request. We give an an analysis of the trade-off betwdba cluster member’s contribution. However, this strategy also
desired privacy levels and efficiency using the MSN IM uséncreases the required hop count for troubleshooting, since
data in Section V. fewer friends will choose to be helpers. We will evaluate the

A cluster hop on the forwarding path

Cluster
Entrance

Cluster

Receive a request ™, &
Distribute shares Non- \.-"
Elect the cluster exit ™. Helper

Unicast subtotal

Aggregate cluster sum and proxy

M~ EFO

Fig. 2. Parameter Aggregation and Propagation within a Cluster.

tradeoff between the hop count overhead and the threshtddbe undercounted. For example, if the hash function has
scheme in Section V-C.4, using the MSN IM topology. a range ofC values, the estimated cardinality will never be
Members who fall below the threshold still participate in théigher thanC'.

secure sum but do not help, contributing to the privacy of other Fortunately, most entries have a small cardinality and hence
cluster members. If the complete friendship topology wetelower chance of collision. Entries with large cardinalities are
known, such members could be identified and discarded frawot likely to be identified root cause candidates by PeerPres-
consideration by the attackers; however, one of our securéiijire [17]: As the cardinality increases, the sick probability will
assumptions is that individual friendship relationships are keg#¢crease.

private (Section IlI-B). According to our study [17], 97% of Windows registry
o . entries have no more than 3 values, and in 18 out of 20
E. Aggregate Cardinality Information real-world troubleshooting cases, the root cause entry has a

In this section, we address the case when the set of possfédinality of no more than 3. Therefore, we chodse- 16,
values for suspect entries is unknown. In this case, we canRé€ause under-counting the cardinalities larger than 16 does
randomly initialize the value distribution (Section IV-A). Wehot have much impact on the PeerPressure ranking of the root
are also unable to perform the multi-party sum to aggregdtduse candidates.
the value distribution within a cluster, as that requires a fixed- However, even for entries with small cardinalities, there
length vector with one entry for each possible value. Instedd, still a chance of hash collisions. Any two values have a
our scheme is to have the sick machine choose a hash functopbability of collision of% for C = 16, and hence many
h to map values of each suspect entry into a small rangetries with cardinalities of 2 and 3 will be undercounted.
0...C — 1. The FTN nodes will then maintain the numbeiVe address this problem by using several hash functions,
of entry values that hash to each of tde values in the hi,...,h;, and compute the histogram for each one. To
troubleshooting request. This then requires us to have a seceatimate the cardinality, the sick machine can count the number
round query to find out the most popular values of the toyf non-zero entries in the histogram for each hash function and
ranking root cause candidates yielded from the first rouriake the largest count. In this case, the cardinality will only
PeerPressure diagnosis, for the purpose of misconfiguratig undercounted if there is a collision in &llfunctions. For
corrections. an entry with 2 values, the chances of this a}%e so by

The aggregate vector will contain valu€sunt. (i) for each increasingk we can make this probability arbitrarily small.
entrye and each valuein the range) ... C—1. When a helper Our approach works well to measure small cardinalities
machine is updating the aggregate, it will compute the hashafcurately, while undercounting large ones. Note that using
its own value for entrye, V,, and incremenCount.(h(V,)). several smaller histograms is more efficient than a single
Once the aggregate is collected, the sick machine can estintzsigtogram: a histogram witlkC' values will have the same
the cardinality of each entry of the values by counting the communication complexity agé histograms withC' values,
number of non-zer@ount,(i)'s. but the odds of a collision for a hash function with rarige

1) Choose An Appropriate Hash Rang€he range of the is % rather thanﬁ.
hash function directly affects the size of the troubleshooting Based on our previous PeerPressure evaluation [17], we
request, so we want to use a small hash function to redud®osek = 6: Our data showed that the median number of
communication overhead. However, smaller hash functioraspect entries is 1171, with 87% of them having a single
increase the chance of hash collisions and cause the cardinaldiue, with 7% of them having 2 values, 3% having 3 values,

and 3% more than 3. For a 2-valued entry, the odds ofaad exit nodes as the first round, rather than picking new ones.
collision are%. For a 3-valued entry, the odds of at least on€he aggregate value computed sigm. = Zvemj(ve):i Ve.
collision are(1 — 1156124)6- For a 4-valued entry, the odds arel0 do this, each participant who helped in the first round, and
(1-282:1413)6 Collisions in entries with more values are eveMvhose value foe matches the hash value in the second request
more likely; however, we are only interested in the case whelfej (Ve) = @) will contribute V.. to the sum. All other members
there are enough collisions to produce only 3 or fewer valugédll contribute 0.

in each hash function; otherwise, the collision is irrelevant asSinceV, may be a string, we have to convert it to an integer
the undercounted cardinality is unlikely to cause PeerPressu@éue. We do this by considering the bit representation of the
to identify the entry as a root cause. The probability of suchs&fing as an integer and adding it to the sum. Since all the
collision is lower than the probability of a collision among 4hares in the multiparty sum must be of the same size, we

values, so in the following computation we consider all entriggke the sum over 8192-bit integers. This allows us to support

to have no more than 4 values. strings that are up to 1024 bytes in length. The shares in this
The chances of a collision occuring emy of the 1171 round are larger than in the first one; however, the number of
entries can be calculated as: entries involved is much smaller and so the communication
0.05.1171 complexity is 'similar to. the first. round.
1—(1- %)0'07‘“71 . Q —(1- 1ir)é£4)6> Once the sick machine receives the aggregate from all the
0.03-1171 nodes, it can compute the most popular valgeby dividing
: (1 -(1- %43'13)6) ~ 5%. sum, by the histogram valué (i.e., the number of samples

with value V,) for hash functionj from the first round. The
Therefore, in about 5% of all troubleshooting requestgesult, interpreted as a string, will be the most popular value,
there will be some entry with an undercounted cardinality @fhich can then be used to repair the sick machine.
3 or less, which may be identified as a root cause. As welf the division results in a non-integral value, or the resulting
will show next, such collisions can be discovered during thgring is not intelligible (e.g., contains non-ASCII characters),
second round query for the most popular values. If collisionsis signals that a collision occurred and there are multiple
are found, then the sick machine can retry with a differeRhlues such thab;(V.) = i. In this case, the sick machine
set of hash functions or larger. The new request shouldwill know that the cardinality ofe was undercounted. The
include only the entries where collisions occurred and thggck machine will need to repeat the first-round query with
the communication overhead will be much smaller. a different set of hash functions to obtain a more accurate
For any suspect entry, hash collisions in this entry may cardinality estimate, and then use the second round to obtain
cause its ranking to improve, while hash collisions in lowethe most popular values.
ranked entries may cause them to overtakand lower its
ranking. Nevertheless, it is hard for entries with significantly V. PROTOCOLEVALUATION
larger cardinality to catch up on ranking. Therefore, in th&_ Security Analysis
second round, we query the most popular values of a few more
top-ranking entries in order to account for possible collisions. TO €valuate the security of our design, we consider the
2) Diagnosis on the Sick Machine and Second Roufkind of information that is revealed to each participant in the
Query: Using the aggregated histogram, the sick machifgotocol. Note that secure communication channels at each
estimates cardinalities for all suspect entries, and then rafikd render eavesdropping attacks ineffective, and hence we do
suspected entries according to the PeerPressure algoritAff.need to consider attacks from nodes who do not participate.
However, the histogram does not reveal what the correct valué® cluster member that is neither an entrance nor an exit
for the entry should be; in order to discover it, the sick machiryéll only learn the troubleshooting query, which does not
needs to perform another round of the protocol. identify the sick machine and thus does not contain privacy-
The sick machine can identify the hash of the most popul§@Mmpromising information.
valueh;(v) = i, whereh; is the hash function from which we A cluster entrance will see the query and the aggregate of
obtained the cardinality. It can then ask its friends to identifijne contributions so far. However, since this aggregate includes
which value has that hash. However, on|y someone who rua;gandom initialization, it will not be able to find out the
the same app”cation will be able to answer this query, a,ﬁ;@ntributions of past clusters or find out whether the previous
we do not want to reveal who that might be. Therefore, wRop was the sick machine or simply a forwarder. It will also
once again make use of secure multiparty sum to find the méggeive the aggregate data from the cluster exit. This data will
popular value without compromising privacy. include the contribution from the cluster as well as from any
In the second round of the protocoL the sick machine mak%gther hOpS. Because of the random wait, the cluster entrance
another request, this time containing a list of the top_rankingl,i” not be able to tell whether further hops were involved and
root-cause candidate entries, as well as the hash values ofifig¢ate the contributions from the cluster members.

most popular value; i.e. triples,(7, 7). The second round
Pop b (]) SA more robust scheme would recompute the count of contributofig to

proceeds S'm"a_”Y to the first one t‘? compute an aggregai&yder to be more tolerant of cluster members that may have left between
over all the participants, except that it uses the same clustesfirst and second round.

The cluster exit will receive the shares of the cluster 14
members’ contributions and will be able to compute their sum.
However, this sum will include the aggregate from the past
hops contributed by the cluster entrance, hence the cluster exit
will not be able to isolate the contributions from the cluster. It
will also receive the aggregate from the next cluster entrance.
However, this aggregate will include contributions from mem-
bers of the next cluster as well as potential subsequent clusters,
all of which are not known to the cluster exit.

i
15

Percentage(100%)
o

IS

N

We can see that message inspection attacks at any single o L s ssss9999393333333983883500000 000000000000 00000
node do not reveal any privacy-sensitive information. Next, 27 12 17 22 27 32 37 42 47 52 S7 62 67 72 77 82 87 92 9.
we will consider gossip attacks when two members collude. Number of Friends
If a cluster entrance colludes with the cluster exit, together Fig. 3. Distribution of the Number of Friends

they will be able to determine the contributions of the other))
cluster members. They will still be unable to determine wh& common friends in average; two nodes that are two hops
each individual member contributed: the secure multi-parfV@y rom each other have 2%; three hops, 0.3%; and 4 hops,
sum ensures thall other cluster members must collude t¢€SS than 0.1%. Further, we randomly picked 100 IM users
reveal the contributions of an individual member. Howevefith more than 4 friends (since an FTN node will not form
they will learn some facts, such as the number of C|ustgrclu_ster unless it has more than 4 friends (Se(_:tlon IV-D.1).
members that decided to help. By reducing the probability ¥¥¢ find that on average, 28.92% of a node’s friends do not
help, this number will be a small fraction of the cluster siz&1ar€ any common friends with the node; 21.52% have one
and therefore not compromise the privacy of the participanf2mmon friend with the node; 10.61% have 2; 9.85% have 3;
Section V-C examines the corresponding trade-off betweHf remaining 29.1% have 4 or more. _ .
privacy and protocol efficiency. Another fr_lends n_etworl_< characteristics _that is of interest
The fair random selection of the cluster exit mitigates th@ the FTN is how likely is a troubleshooting request to be
chances of a collusion between the cluster entrance and &pted to a “dead end”, a node on the forwarding path with no
If a cluster entrance ha& colluders in the cluster, the chance®ther friends to proxy the request on. In such cases, parameter
of one of them being picked as the exitGy/G, whereG is propaggtion terminates without gathering enough samples. The
the cluster size. A Sybil attack can be used to increase th@§gbability of routing to such dead ends Bropeaarna =
chances; on the other hand, threshold participation (Section Rei (G = 9) - Ppeaarna(i), where P(G = 1) denotes the
D.3) mitigates the consequences of a collusion. It is al§grcentage of clusters of sizeand Ppeaapna(i) represents
possible for a cluster entrance to cooperate with the entrarifg @verage percentage of dead end participants in a cluster
of the next cluster and isolate the contributions of the clust&f Siz€ . According to our computation from our MSN IM
However, this type of collusion is less likely, since the ne§@t@Propeadsna = 0.0013. So, the average number of nodes
entrance is picked by the cluster exit and never revealed to figt need to be traversed before reaching such a dead end is
previous entrance. 1/0.0013 = 770, which far exceeds the number of nodes that

The use of a historyless random walk makes polling attacR€€d t© be traversed with the FTN protocol (Section V-C).

less productive, as an attacker cannot reduce the likelihood of
a friend forwarding a troubleshooting request to other cIusteg'.
Any response to a request is likely to include the aggregatel) Metric: We use the metric oprobable innocencéhat
information from several clusters and not reveal privacyas introduced by Reiter and Rubin [14] for measuring the
compromising details. As another defense against pollingcertainty of a cluster member being a helper: A cluster
attacks, we limit the rate at which a node becomes a helgeember is considered to be probably innocent if, from the
in queries (see Section VI). colluders’ point of view, the member appears no more likely to
) o be a helper than not to be one. This requires that no more than

B. Friends Network Characteristics half of the cluster participants should help with troubleshoot-

We obtained a snapshot of MSN IM operational data fromg, or P, < 0.5. Therefore, we define thmnocence level
2003. It had 150,682,876 users. The number of friends ofla= —log,oP;, where Py is the probability that over half of
IM user represents the upper limit of our cluster size. FiguretBe cluster participants help with troubleshooting. We exclude
depicts the distribution on the number of friends, showing the cluster entrance and exit from the participants since we are
median of 9, and an average of 19. We excluded those usassuming that they are colluding in order to find out the cluster
with just one friend since these nodes will not be included aggregate.P; = Zf:’[fG_Q)/Q]H (G2)Pi(1 — Py)G2
the FTN forwarding path. whereG is the cluster size. Here, we assume the worst case

The number of common friends impacts the FTN routingcenario that every cluster member owns the application under
because FTN needs to avoid loops or double-counting (Sémubleshooting — if notP; will be smaller. We also assume
tion IV). we found that two neighboring nodes have 14.15%hat every cluster member chooses the sdme Therefore,

Tradeoff Analysis

also simulated our FTN routing protocol on the static MSN IM
topology, configured with various innocence levels. For each
innocence level, we randomly picked 100 starting nodes as the
requestor, and sé®y =1 —1/N = 0.9 for N = 10 samples.
We list in Table | the number of clusters and nodes involved
based on our simulation. One can see that in general, the num-
ber of clusters involved in our simulation is slightly smaller
than our calculations. This is because we used an upper-bound
estimate ofP,,cr10p = 2.33% for our calculations, while in
e our simulation, Py,criqp is different for each cluster, and is
46 8 1012 14 16 18 0 2 24 2% 28 0 2 U B in general less than 2.33%. In reality, the number of clusters
Cluster Size . . .

required to collect 10 samples might be larger, since not all
Fig. 4. The Selection of, for Different Cluster Sizes to Achieve Different friends are available or own the corresponding application. It
Innocence Levels. is clear from the table that the higher the privacy requirement
is, the longer the routing path it takes.

o
'S
a

=1 -=1=2 1=3

Probability to Help (Ph)
o o o
B, 9 N 92 w 9
(5] N [w o >

o
s

o
o
a

o

the higher the innocence levélis, the better the privacy is,
and the smaller thé’; is. Figure 4 shows,’s that a member

should take with various cluster sizes for achieving dif'ferer%te ?e)c:;[grzam/;hgzlpdeerssreilbeecc;l?:.gjgt]i%nﬂll\e; Iljtezras\\l/ee cr;lpelZar
innocence levels. In generaky, takes a smaller value for aantee robable innocence for all the cluster .a,rtici ants ?n the
higher innocence level or a smaller cluster size. P P P

. . face of cluster entrance and exit collusion, while achieving
We use the average number of clusters involved in tro

bleshooting. B(N h i f uat IH- higher participation rate. For example, we can set the
es ootmg,_ (Ne), as the metng or eva uatlng. protoco probability to participatel’, based on the cluster size to the
efficiency, since the troubleshooting response tifigV.)

o ! value corresponding tb = 1 in Figure 4. The average number
is dictated by the number of clusters a troubleshooting & helpers in a cluster will match the one whé is chosen

quest t.raverlsef. ('IEeNexpe.cted num(tj)erhof ntlnge:,' 'n\:jowedsi'ﬁﬂlarly, and hence we expect the search to terminate after
approxma’i/evy 2 - B(K[) S'Ece a no eN as ”e?] S Orbnly 2.02 clusters. However, we can compare the privacy level
average.) We haveE(N.) = WNEre 5 that with innocence level 9, as in both cases the probability

- Poum,'zi P(G:l)7Ph,L A
Pown Is the percent of users that own the application Undgfat more than half of the cluster members will become helpers

troubleshooting; denc_)tes.the cluster §iz€2(G = 1) 'S the g negligible. (Of course, at innocence level 9, the expected
percent of clusters with sizg and P, ; is the probability 10 ,mper of helpers will be significantly less than half.)
help according to cluster sizefor a given innocence level.

With the common friends’ statistics from our MSN IM friends The helper selection causes involves at least one extra
network topology (Section V-B), we estimaf#(G = i) -7 round communication in each cluster, more if retries are
as P(F = i) -i- (1 — Poyertap), Where P(F' = i) denotes necessary, which will happen with probability 10% in our
the percentage of users withfriends, andP,,c.1.p iS the example choice ofP,. Therefore, the latency of a request
percentage of the cluster entrance’s friends that have alreagyhg the iterative method going throughclusters will be
seen the request (and hence will not join its cluster). Accordimggher than if the adaptive®, method is used by a factor
to overlapping friends distribution, neighboring nodes havsf about 3.1/2 (as there are two rounds of communication
14.15% of common friends in average, and since neighboritgthe adaptiveP;, method). However, this is still lower than
cluster entrances are two hops away, one can estimate tthe latency of a request when innocence level 3 or higher
upper bound 0fP,ucrap as Y ;0,(0.1415)" = 2.33%, where is desired. Furthermore, since fewer machines are involved
(0.1415)" approximates the percentage of common friends the aggregate computation, there’s less of a chance of
between the current cluster entrance and a previous clusiatountering a malicious or compromised node. Therefore,
entrance that i$ hops away. the iterative helper selection method is useful when a high
2) Innocence Level Vs. Number of Clustedow, we use level of privacy is desired, and when the median cluster sizes
the MSN IM friendship topology to evaluate the trade-ofare small.
between privacy) and average number of cluste®((V.))
involved in a troubleshooting event. We assume fRat, = 1 4) Threshold-Driven Helping Vs. Number of Clusters:
(e.g., the application under troubleshooting is very populaflow, we evaluate the path length overhead due to the use
We impose an upper bound on the cluster size to 36 for limif threshold-driven helping strategy (Section IV-D.3). Based
ing the intra-cluster communication overhead. This reduces thie our common friends data from the MSN IM network
average number of nodes in a cluster to 14 based on our ME&éction V-B), a threshold of' = 1 reduces the number of
IM data. Table | shows the expected number of clusters ahdlpers from the cluster by 28.92%), = 2 by 50.44%, and
nodes needed to obtain 10 samples (with which PeerPressurE is 3 by 61.05%. Figure 5 shows the trend of average number
already effective [17]) using the static IM friendship topologpf clusters needed with these threshold values to obtain 10
(Figure 3) for achieving nine different innocence levels. Weamples for nine different innocence levels.

Innocence Level 1 2 3 4 5 6 7 8 9

Expected # Clusters 2.02| 282 | 367 | 462 | 568 | 6.91 8.3 9.84 | 11.65
Expected # Nodes Involved 28 | 39.4| 514 | 64.69| 79.55| 96.8 | 116.2 | 137.82 | 163.11
Avg # Clusters in Simulation 2 3.1 359 | 455 | 578 | 6.75 8.18 9.49 11.27

Avg # Nodes Involved in Simulation] 27.6 | 445 | 47.47 | 69.2 85.9 | 925 | 120.35| 140.4 | 162.3

TABLE |
AVERAGE NUMBER OF CLUSTERS ANDNODESINVOLVED TO OBTAIN 10 SAMPLES

45 45

404 —#— Enterprise User (sec)
— = -Home User (min)

B

30

25

40— —m-T=0 - - - T=1

20 4

Obtain 10 Samples

15 4

Estimated Response Time

101

Average Number of Clusters Required to

1 2 3 4 5 6 7 8 9
Innocence Level

1 2 3 4 5 6 7 8 9
Innocence Level

Fig. 5. The average number of clusters required to obtain 10 samples fig. 7. The estimated average response time for enterprise users (5 Mbps
different threshold helping strategies. available bandwidth) and home users (100 Kbps available bandwidth)

hash function. If we use six 16-valued hash function, and

25 1 we reserve 1 byte for the count, the troubleshooting request
message is about 100 KB. If we choose the 20 top-ranking
24 entries as the root-cause candidates, and reserve 1024 bytes

to aggregate the sum of the most popular value, the second
round query message is approximately 20 KB. (Of course, the
1 requests can be compressed to save network bandwidth.)

151

During the process of cluster aggregation, each participant
has to transmitM « G KB information, whereM KB is the
oe———————— troubleshooting message size. Each node on the return path

8 59 105 213 717 945 1303 2337 2075 4371 only needs to transmif/ KB information. The number of

Number of Suspects clusters involved on the forwarding pathi¥ N..) on average.
Fig. 6. Local Processing Time Vs. Number of Suspects for 20 Real-worlohe return path haF(N..) nodes, since the entrance and exit
Troubleshooting Cases. nodes of each cluster on the forwarding path are both involved
to propagate the reply back along the return path. Figure 7
depicts the estimated average response time for an enterprise
user with 5 Mbps available bandwidth for troubleshooting, and
VI. PROTOTYPEIMPLEMENTATION AND PERFORMANCE a broadband home user with bandwidth of 100 Kbps, when

. ._cardinality is unknown, to achieve nine different innocence
We have prototyped an FTN system in C#. In our img; y

plementation, aside fron#,, we also set ahelp budgetin levels.

the unit of “requests per friend per day", for FTN nodes to Also, we can estimate the timeout that a node on the
control the rate of configuration state exposure. In addition,f@rwarding path should set. The average hop length to obtain
disk budget is configured by an FTN user to set aside féP samples under innocence level 64isgHopLen = 1/(1—
maintaining FTN protocol state such as previous and nekr) = 6.9, where P; = 0.855 is the average probability
hops for respectiveReqI D's that have been traversing theof forwarding the request from one cluster to another. The
node. The disk budget is fair-shared among the node’s actk@iance of the hop length isur = (Ps)/((1 - Py)?). Hence,
troubleshooting friends. Figure 6 shows the local processit¢ have AvgHopLen + 3 - \/var = 26. The cumulative
times for the 20 troubleshooting cases under study [17]. Tpeobablllty of all hop Iengths> 26 is > [s P (L 1)(1 -
processing time grows with the number of suspect entries. P;) = Pf (1 — P> 0 Pf =P " 0‘001. Therefore,

In terms of bandwidth overhead, for the troubleshootinge choose 26 to estimate the upper limit of the hop length,
cases [17] we evaluated with, there is a median of 1171 suspawetl set the timeout to be 1.6 minutes for an enterprise user
entries. When cardinality is unknown, the size of the valugith 5 Mbps bandwidth, and 67 minutes for a home user with
distribution field depends on the range of the small-valud®0 Kbps bandwidth.

0.5 -

Local Processing Time (Second)

VIl. RELATED WORK noise would significantly impact ranking accuracy. Increasing
)) ~_ the number of samples for effective noise filtering would un-
There is much related work in the area of anonymizatiogcceptaply increase the overhead of troubleshooting requests.
The random walk approach. is aIsp t_hose used in FreeNet Blour problem of privacy-preserving parameter aggregation
and Crowds [14]. FreeNet is a distributed anonymous infoghares much similarity to the problem of secure and privacy-
mation storage and retrieval system. Crowds provides anoaserving voting [8], [2] with three distinctions. First, voting
mous web transactions. Other anonymization system are baggflires voters to be authenticated by a centralized authority,
on Chaum'smixes [4], which serve as proxies to provideg,ch as the government. Second, our protocol has an additional
sender-receiver unlinkability through traffic mixing. Onioneqyirement of participation privacy; otherwise, the privacy of
routing [10] extends the mixes with layers of onion-style prepe application ownership is compromised. Lastly, most voting
encryptions. Tarzan [7] implements the mix idea using a pe&enarios involve a fixed, limited number of voting chances,
to-peer overlay and provides sender anonymity and robustngssie our troubleshooting problem does not.
to the mix entry point. The authors of SIA[13] presented a set of techniques for
All of the above anonymization techniques address point-tgecyre information aggregation in sensor networks with the
point communications. However, our protocol in FTN inV0|Ve§resence of malicious sensors and aggregators. The integrity
one-to-many communication, in the form of broadcasting & information aggregation is achieved essentially through
troubleshooting request to peers. This broadcast should Rghentication which is identity-revealing. In FTN, we cannot

limited according to the friend relationships, which is morgg the same because of the privacy concerns.
naturally implemented using a peer-to-peer overlay. Further, as

discussed in Section IlI, our recursive trust model requires that VIIl. CONCLUSIONS

the configuration data be transmitted between friends. Fully|n this paper, we have presented the design, implementation,
anonymous configuration data arriving over a mix networnd the evaluation of thEriends Troubleshooting Netwark
could not be trusted to be authentic, as only friends cg@er-to-peer overlay network that aggregates privacy-sensitive
be trusted not to contribue false and potentially harmfigbnfiguration data from peers to carry out PeerPressure-based
information about their configurations. misconfiguration root-cause diagnosis. The links between FTN
Canny [3] proposed a collaborative filtering algorithm tgodes reflect the friendship of their owners. The FTN man-
allow a community of users to compute a public aggregaifests recursive trustrather than transitive trust. In FTN, we
of their data without exposing individual users’ data. In higse ahistorylessand futurelessrandom walk for integrated
scheme, homomorphic encryption[2] is used to anonymousigarch and cluster-based parameter aggregation to achieve pri-
aggregate encrypted user data and the decryption key is u@ty. We further introduce a cluster-based secure aggregation
held by any single person but instead secret-shared am@ngtocol to find the cardinality and mode of a collection of
all the clients. The FTN targets a highly dynamic friendgalues while preserving the privacy of individual contributions.
community where users join and leave all the time. The keyany of our design decisions are guided by a real-world
share generation process would incur a high cost since nfignds network topology obtained from the MSN IM network.
shares would have to be generated every time a user joiR$N poses interesting tradeoffs between privacy and protocol
Furthermore, the collaborative filtering algorithm is designesgkficiency which we have analyzed in detail with the real-
for a known, fixed set of items, while the set of values fojorld friends network data. The performance of our current
configuration entries relevant to troubleshooting requests is pebtotype allows enterprise users to diagnose misconfigura-
known ahead of time. tions in a minute with a high privacy guarantee. We believe
Similarly, the well known secure multiparty sum protocobur techniques can be applied to other application scenarios
enables aggregation without revealing individual private cothat require privacy-preserving information aggregation.
tributions; however, this protocol only supports aggregations
of fixed-length vectors. We use the secure sum protocol as IX. ACKNOWLEDGMENTS

a building block, but we extend it to support counting the Luis von Ahn, Josh Benaloh, David Brumley, John Duna-

number of distinct values in a set, as well revealing tH#"n; Yih-Chun Hu, David Jao, and Dan Simon have given us
iInvaluable discussions and critiques on the technical content,

mpst popular value, while keeping the individual contributiongs \vell as the presentation of this paper. We are grateful for
private. We also make sure to send the results of the aggreqaar help. We also thank the anonymous reviewers for their
to a single node, different than the cluster entrance, such tiaightful comments and suggestions.
collusion between at least two nodes is required to find out
the cluster-wide sum.

Another technique for privacy-preserving data aggregatioH] Rakesh Agrawal and Ramakrishnan Srikant. Privacy Perserving Data
. . . ; Mining. In Proceedings of SIGMODX2000.
!S to _'ntrOduce random perFurbatlons (1] at.ea.C.h Input. Th?Z] Benaloh. Verifiable Secret-Ballot Election$hD thesis, Yale University,
idea is that these perturbations would not significantly affect Sept. 1987. S _
the aggregate, while hiding individual contributions. However,[3] .Iljo_hn Cagg)(/J.ZCollaboratlve Filtering with Privacy. IBEE Security and

o . Privacy, .
this is only true when a large number of samples are collecte D. L. Chaum. Untraceable Electronic Mail, Return Addresses and

with only 10 samples needed for PeerPressure, the random Digital Pseudonyms. II€ACM, 1981.

REFERENCES

(5]

6

[7

8

[9]
[20]

[11]
[12]
(23]

[14]

[15]

[16]

[17]

(18]

[19]

lan Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval
system. In Proc. International Workshop on Design Issues in Anonymity
and Unobservability. InProceedings of International Workshop on
Design Issues in Anonymity and Unobservahil®@01. Lecture Notes
Computer Science Volume 2009.

John R. Douceur. The Sybil Attack. IProceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTR)2.

Michael J. Freedman, Emil Sit, Josh Gates, and Robert Morris. Intro-
ducing Tarzan, a Peer-to-Peer Anonymizing Network LayerlPIAPS
2002.

T. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme
for Large Scale Elections. IRroceedings of Auscrypbec. 1992.

The Gnutella v0.6 Protocol, Gnutella Development Forum, 2001.

D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion Routing for
Anonymous and Private Internet Connections CIACM, Feb 1999.
KaZaa. http://www.kazaa.com.

Moni Naor. Bit Commitment Using Pseudo-RandomnessAdwanced

in Cryptology — CRYPTO '8%ages 128-136, 1989.

Bartosz Przydatek, Dawn Song, and Adrian Perrig. SIA: Secure
Information Aggregation in Sensor Networks. Broceedings of ACM
SenSysNov 2003.

Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for Web
Transactions. IACM Transactions on Information and System Security
Nov 1998.

M Silver and L Fiering. Desktop and Notebook TCO Updated for the
21st Century, September 2003.

Web-to-Host: Reducing the Total Cost of Ownership, The Tolly Group,
May 2000.

Helen J. Wang, Yu Chen, John Platt, Ruyun Zhang, and Y. M. Wang.
PeerPressure, A Statistical Method towards Automatic Troubleshooting.
Technical Report MSR-TR-2003-80, Microsoft Research, Redmond,
WA, Nov 2003.

Helen J. Wang, Yih-Chun Hu, Chun Yuan, Zheng Zhang, and Yi-Min
Wang. Friends Troubleshooting Network: Towards Privacy-Preserving,
Automatic Troubleshooting. IfProceedings of the 3rd International
Workshop on Peer-to-Peer Systems (IPTRBD4.

Yi-Min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen J.
Wang, Chun Yuan, and Zheng Zhang. STRIDER: A Black-box, State-
based Approach to Change and Configuration Management and Support.
In Proceedings of LISA2003.

