
A Generic Application-Level Protocol Analyzer and its Language

Nikita Borisov
UIUC

nikita@uiuc.edu

David J. Brumley
Carnegie Mellon University

dbrumley@cs.cmu.edu

Helen J. Wang
Microsoft Research

helenw@microsoft.com

John Dunagan
Microsoft Research

jdunagan@microsoft.com

Pallavi Joshi
UC Berkeley

pallavi@eecs.berkeley.edu

Chuanxiong Guo
ICE Nanjing

xguo@ieee.org

Abstract

The Shield project relied on application protocol an-
alyzers to detect potential exploits of application vulner-
abilities. We present the design of a second-generation
generic application-level protocol analyzer (GAPA) that en-
compasses a domain-specific language and the associated
run-time. We designed GAPA to satisfy three important
goals: safety, real-time analysis and response, and rapid
development of analyzers. We have found that these goals
are relevant for many network monitors that implement pro-
tocol analysis. Therefore, we built GAPA to be readily inte-
grated into tools such as Ethereal as well as Shield.

GAPA preserves safety through the use of a memory-
safe language for both message parsing and analysis, and
through various techniques to reduce the amount of state
maintained in order to avoid denial-of-service attacks. To
support online analysis, the GAPA runtime uses a stream-
processing model with incremental parsing. In order to
speed protocol development, GAPA uses a syntax similar
to many protocol RFCs and other specifications, and incor-
porates many common protocol analysis tasks as built-in
abstractions. We have specified 10 commonly used proto-
cols in the GAPA language and found it expressive and easy
to use. We measured our GAPA prototype and found that
it can handle an enterprise client HTTP workload at up to
60 Mbps, sufficient performance for many end-host firewal-
l/IDS scenarios. At the same time, the trusted code base of
GAPA is an order of magnitude smaller than Ethereal.

1 Introduction

The Shield project [54] introduced the concept of
vulnerability-specific, exploit-generic signatures for intru-
sion prevention. These signatures differ from traditional
exploit-specific signatures by describing all paths that lead

to a network-exploitable vulnerability. In doing so, they re-
quire a much more detailed understanding of both network
protocols and application context. Therefore, each signa-
ture performs some form of protocol analysis, parsing net-
work message formats and reconstructing context.

The original Shield prototype included a domain-specific
language for performing protocol analysis necessary for a
signature. However, the language was incomplete and diffi-
cult to use for some protocols, in particular, text-based ones
and complex ones involving multiple layers. This paper de-
scribes the design, implementation, and evaluation of the
second-generation language for Shield, supporting rapid de-
velopment of memory-safe and DoS-resilient protocol ana-
lyzers.

In building the language and its runtime, we had sev-
eral goals. The most important one was safety: as Shield is
intended to ensure the reliable operation of applications in
a potentially adversarial environment, it is imperative that
Shield analyzers do not introduce new sources of failure
or vulnerabilities. We therefore wanted to avoid memory
corruption errors and provide resistance to denial-of-service
attacks. All of the analysis is performed within a memory-
safe language, and we introduced further restrictions into
the language to limit the amount of memory and CPU used
by protocol analysis.

The second goal was one of real-time analysis and re-
sponse. Shield acts as a “bump in the wire”; therefore, it
must not buffer data for too long to avoid application de-
lays or even deadlock, and at the same time it must not de-
liver data to the application until it can be sure that it is
safe and will not result in a vulnerability. The language and
runtime are therefore designed based on a streaming data
model, parsing, analyzing, and enacting decisions on po-
tentially incomplete application messages. In terms of per-
formance, our prototype implementation can process data
at speeds matching the traffic demands of busy web servers,
allowing for online operation.



Our third goal was to support rapid development of pro-
tocol analyzers and vulnerability signatures. The timely de-
ployment of vulnerability signatures is essential to Shield’s
effectiveness. To facilitate the development of protocol ana-
lyzers in Shield, we incorporated common tasks involved in
protocol analysis, such as session management and buffer-
ing of incomplete data, as features of the language and the
associated runtime. We structured the domain-specific lan-
guage to be similar to the BNF specifications found in many
RFCs that describe protocols. We also introduced a visi-
tor syntax to separate vulnerability-specific analysis logic
from message parsing and protocol context reconstruction,
so that the latter can be reused among many vulnerability
signatures for a single protocol or application.

Although our initial motivation came from the Shield
project, we recognized that the above goals are important
for other tools that perform application-level protocol anal-
ysis. In particular, network monitoring tools such as Ethe-
real [50] and tcpdump [31], intrusion detection systems
such as Snort [51] and Bro [45], and application-level fire-
walls such as Hogwash [28] all perform some form of pro-
tocol analysis, but each tool involves hand-coding the ana-
lyzers in a general-purpose, low-level language such as C.
This approach is both expensive and error-prone, resulting
in dozens of security vulnerabilities that have been found
in recent years in the popular tools Ethereal and tcpdump.
We therefore designed our language and runtime to be a
generic component that can be incorporated into such tools
and perform the protocol analysis in a secure fashion. We
called our tool GAPA, the Generic Application-level Proto-
col Analyzer, and its associated language GAPAL. The use
of GAPA could reduce the trusted code base of tools like
Ethereal by over an order of magnitude and greatly reduce
the risk of worms that exploit the parsing logic of security
tools, such as Witty [49].

The rest of the paper is organized as follows. We de-
scribe the GAPA language in section Section 2, and the lan-
guage runtime in Section 3. We present our evaluation in
Section 4. In Section 5, we compare and contrast GAPA
with related work. Finally, we conclude in Section 6.

2 GAPA Language

A protocol analyzer specification in the GAPA language
(GAPAL), called a Spec, takes care of three tasks. First, it
specifies how to parse the message format used by a proto-
col. Second, it needs to correctly track session and applica-
tion context. Finally, it needs to perform analysis based on
the message content and the application context, and poten-
tially carry out decisions, such as terminating a connection.
In this section, we discuss the language features for these
three tasks and then present some of the important safety
features built into the GAPA language. We will illustrate

many of the features using the specification for the HTTP
protocol in Figure 1.

2.1 Message Parsing

Each protocol defines a particular message format for ex-
changing data. These formats can roughly be classified into
text and binary. Text formats use ASCII text to encode both
the structure and the content of messages, following some
sort of grammar that is often formalized in Backus-Naur
form (BNF). Binary formats use machine structures to en-
code data, overlaying C-like constructed types onto the data
stream. A generic protocol analyzer must, of course, be able
to parse both types of protocols.

The original Shield prototype language was mostly ori-
ented towards parsing binary protocols, with the language
describing data structures that form messages. Text pro-
tocols were supported by switching from byte to word or
token positions; a decision that we ultimately found too
cumbersome for easy protocol specification. In the second-
generation language, we have adopted a BNF-like grammar
for specifying message formats. This grammar makes it
easy to represent text protocols, and there is a natural map-
ping of binary protocols to this grammar as well, making
the language very versatile.

The grammar section of a GAPAL specification con-
sists of production rules that specify a mostly (see be-
low) context-free language. Each production maps a non-
terminal (variable) to a sequence of terminals (tokens) and
non-terminals; additionally, an alternation operation can be
used to select among multiple such sequences. This struc-
ture closely mirrors BNF notation, and we found that much
of the task of specifying text protocols can be accomplished
merely by copying the BNF specification out of an RFC.
Each item in the sequence on the right-hand side of a pro-
duction can also be annotated with a symbol name, in the
form of <symbol>:<type>. The symbol name can be
used to refer to that part of the message later during proto-
col analysis.

Expressing binary protocols is also straightforward. In
this case, the terminals represent base types, such as bytes
or k-bit integers, non-terminals represent structures, and al-
ternation is used to encode unions. We also support array
notation, with both statically and dynamically-sized arrays.

RFCs often use BNF notation to describe a protocol, but
these specifications are not in general context-free gram-
mars; they contain ambiguities that are resolved based on
other fields in a message or protocol state. Rather than force
GAPAL authors to rewrite specifications to be context-free,
we incorporate the concept of directed parsing, where a pro-
grammer can use an interpreted C-like language and embed
code to specify how a certain field should be parsed based
on variables computed from parsing previous fields. For
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protocol HTTPProtocol {
transport = (80/TCP);

/* Session variables */
int32 content_length = 0;
bool chunked = false;
bool keep_alive = false;

/* message format specification
in BNF-like format */

grammar {
WS = "[ \t]+";
CRLF = "\r\n";

%%

HTTP_message -> Request | Response;
Request-> RequestLine HeadersBody;
Response-> ResponseLine HeadersBody;

HeadersBody ->
{

chunked = false; keep_alive = false;
content_length = 0;

}
Headers CRLF

{
/* message_body’s type is resolved

(:=) at runtime based on
Transfer-Encoding */

if (chunked)
message_body := ChunkedBody;

else
message_body := NormalBody;

}
message_body:?;

Headers -> GeneralHeader Headers | ;
GeneralHeader->

name:"[A-Za-z0-9-]+" ":"
value:"[ˆ\r\n]*" CRLF

{
if (name == "Content-Length") {

content_length = strtol(value,10);
} else if (name=="Transfer-Encoding"

&& value==" chunked") {
/* slight simplification */
chunked = true;

} else if (name == "Connection"
&& value == " keep-alive") {
keep_alive = true;

}
};

NormalBody ->
bodypart:byte[content_length]
{
/* ‘‘send’’: sending "bodypart" to

the upper layer (e.g., RPC)
for further parsing */

send(bodypart);
} ;

[...]
}; // Grammar

state-machine httpMachine
{

(S_Request,IN)->H_Request;
(S_Response,OUT)->H_Response;

initial_state=S_Request;
final_state=S_Final;

};

/* Always expect a response after a request */
handler H_Request (HTTP_message) {

int headerCount = 0;

/* visitor syntax */
@GeneralHeader->{
print ("header name = %v \n", name);
headerCount ++;

}
print(‘‘Total number of headers: %v\n’’,

headerCount);
return S_Response;

};

handler H_Response(HTTP_message) {
if (keep_alive) {
return S_Request;

} else {
return S_Final;

}
};

}; // protocol

Figure 1. Abbreviated HTTP specification in GAPAL.

example, the length of the body of an HTTP message is
specified by the header field Content-Length as part of
GeneralHeader; in Figure 1 the content length value is
saved inside a variable and retrieved in the NormalBody
production. Code blocks are also helpful when the type of
a symbol is best determined at runtime. We introduce a re-
solve operator, denoted :=, which allows the statements to
specify how to parse subsequent fields. A resolve assigns a
type (or a non-terminal), specified on the right-hand side,
to a symbol name on the left-hand side. A dynamically
resolved symbol name is denoted with the ‘?’ type. For

example, in our HTTP specification (Figure 1), the type of
message body (as part of HeadersBody) depends on
the value of Transfer-Encoding header. It is possible
to rewrite these grammars to avoid the resolve operator and
be context-free, but the resulting specification is much more
awkward. Directed parsing is also useful in binary protocols
to support such idioms as tagged unions.
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2.2 Tracking Context

A typical protocol interaction involves the exchange of
multiple messages from both sides. Therefore, a GAPAL
specification must track the protocol context (and the cor-
responding application context) across multiple messages
within a single interaction, or session. We define a session
to be a group of related messages; for many protocols this
corresponds directly to a single TCP connection, and this
is the default session grouping used by GAPA. Other pro-
tocols, such as those running over UDP, may encode ex-
plicit session identifiers inside messages or have other im-
plicit session identification mechanisms. To support such
protocols, we allow a programmer to define a session identi-
fication handler, which parses a message (perhaps partially)
and returns the session identifier that the message belongs
to. Such handlers can be used in both TCP and UDP proto-
cols.

Once a session has been selected, parsing occurs accord-
ing to a state machine. The machine specifies what kind of
messages may be received from which end of the connec-
tion in a given state. Once a message is received and fully
parsed, GAPA calls a handler, written in the interpreted lan-
guage, to determine the next state. The handlers are neces-
sary because the state transition may depend on the content
of a message. Handlers are also used for protocol analysis,
as described below.

The HTTP state machine, shown in Figure 1, is concep-
tually simple, alternately expecting a request message from
the client or a response from the server. The response han-
dler in this case will either go to a final state or start wait-
ing for another request based on a variable saving the value
of the HTTP Connection header. Other protocols may
have more complicated state machines, with messages po-
tentially arriving from both sides.

2.3 Visitors

To perform analysis, handlers will need to refer to fields
of a message according to the recursive grammar. In sim-
ple cases, dot notation such as a.b.c could be useful. How-
ever, the dot notation becomes cumbersome in cases with
deep recursion or alternation, which occur in both binary
and text-based protocols. For example, RPC may have up
to 11 different alternations with each alternation 4 levels
deep. In the case of alternation, one must explicitly check
which case was chosen in the current message in order to
avoid referring to fields that are not present.

To address the difficulty of dot notation, we allow the
programmer to write grammar visitors [25] inside handlers.
A visitor is a block of code that is executed each time a rule
is visited. The syntax for a visitor is:

@ <non−t e r m i n a l > −> { . . . <code block> . . . }

The syntax assigns the non-terminal (or its alternation) a
code block to run every time after the non-terminal (or the
alternation) is parsed.

These code blocks work similarly to the blocks inserted
into the grammar, however, we want to enable a clean sep-
aration between the parsing logic and the specific protocol
analysis tasks so that the same parsing logic can be re-used
for different tasks. Essentially, the visitors in a handler rep-
resent the handler’s customization of message parsing for
the purpose of a protocol analysis task. Consequently, visi-
tors are always executed before the rest of the handler code.

As an example, in our HTTP specification in Fig-
ure 1, handler H Request contains a visitor statement
that “visits” non-terminal GeneralHeader, counts the
number of headers, and prints all header names. Ev-
ery time GeneralHeader is traversed during parsing,
headerCount is incremented, and the header name is
printed. When the entire message is parsed, the total num-
ber of headers is printed.

2.4 Layering

Protocols can be layered on top of other protocols, with
a GAPAL Spec at each layer performing protocol analysis
and sending data up to the next layer. A Spec can indi-
cate a lower layer Spec with a uses statement, or directly
bind to the transport layer with a transport statement.
The lower layer Specs use the send call to pass data to
upper layers, where it appears as an incoming data packet.
Each layer has its own session identifiers, grammar, state
machine, and handlers.

We also use our layering mechanism as a general way
of composing data processing logic, very much in the same
spirit as the Unix pipe. In particular, we use layering to im-
plement application-level protocol fragmentation and data-
gram reordering. The lower layer parses out the fragment
data and uses a special version of the send call to indicate
to GAPA the fragment sequence metadata for the current
datagram. GAPA then performs fragment reassembly be-
fore passing the data to the upper layer, which parses the
reassembled data into meaningful message components.

The HTTP Spec in Figure 1 shows an example us-
age of send for protocol layering: the HTTP message
body, parsed into the bodypart variable under the non-
terminals NormalBody and Chunk, is “sent” to the next
protocol layer, say, RPC, for further processing. As another
example, we used layering to implement the vulnerability
filter for CodeRed: the HTTP protocol identifies the URLs
in the HTTP requests and pipes them on to a CodeRed URL
parser which detects and blocks CodeRed.
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2.5 Safety

Safety is a primary goal for the GAPA language. First
and foremost, we want to ensure that GAPA analyzers do
not suffer from crashes or buffer overruns due to memory
errors. To avoid this, the GAPA interpreted language is
strictly typed, with bounds checks on array accesses and no
dynamic memory allocation. The lack of dynamic memory
allocation is also helpful to prevent unbounded memory us-
age. This places a restriction on programmers to implement
certain kinds of logic, but in our experience, we have not
found this to be an inconvenience.

We also make sure that storing the partially-parsed mes-
sage does not result in unbounded memory usage. The
GAPA engine is designed to free memory for those mes-
sage fields that will no longer be referenced, and to apply
computation to message fields as early as possible through
incremental execution (see Section 3.1). This allows us to
parse variable-sized message components such as arrays in
a streaming fashion: the programmer writes code to be run
on each element using the visitor syntax or a foreach
loop, and this code gets executed as each array element is
being parsed, after which the memory for that element is re-
leased. The programmer can retain some of the information
from the variable-sized arrays by storing it in a statically
bounded buffer. For other types of message components,
such as tokens specified by regular expressions, we enforce
a static bound on their length.

To avoid excessive CPU consumption, we allow only a
single looping construct within GAPAL — the aforemen-
tioned foreach statement. The foreach statement iter-
ates over all items inside a safe array. It is limited to for-
ward traversal [36]. The purpose of our foreach loop
is to allow parsing of iterative structures in messages or to
perform a constant number of iterations of certain tasks. It
is possible to nest foreach statements for parsing nested,
iterative structures in messages, but nesting foreach on
the same array is disallowed as this is incompatible with the
streaming model. In our experience using GAPAL, we find
this limited iteration is sufficient. The foreach design al-
lows the CPU cost per byte of network traffic to be statically
bounded.

3 The Analysis Engine

The analysis engine is the GAPAL runtime. It parses
messages using a recursive descent parser. The analysis en-
gine first finds the appropriate GAPAL Spec for the current
packet to be analyzed. The engine then follows the gram-
mar that specifies the message format to generate a parse
tree. Since the engine may receive packets containing in-
complete messages, it performs parsing incrementally, sav-
ing parsing state between packets. During parsing, the en-

gine executes code fragments, both those embedded in the
message grammar and those resulting from the visitor pat-
tern in the handlers (Section 2.3). The handlers use both the
parse tree and any other session state updated by the code
fragments to carry out task-specific logic and to update the
current protocol state.

Whenever the analysis engine fails to parse a message,
it alerts the application containing GAPA, which can then
react appropriately. For example, a firewall would likely
drop the message, while a network monitor such as Ethereal
could display an uninterpreted byte stream.

In the remainder of the section, we focus on our tech-
niques to limit the state in order to resist state-holding at-
tacks and to achieve fidelity in the engine’s interpretation of
the current communication state of an application.

3.1 Limiting State

To prevent state-holding, we structure our analysis en-
gine to perform filtering decisions as quickly as possible
with the use of incremental execution. After receiving each
packet, the appropriate handler is executed, even if the
application-level message is incomplete. The handler is run
until it references a message field that is not yet filled with a
value. At that point, its execution is suspended and a contin-
uation is saved, to be resumed when the next packet arrives.
If the next packet contains the referenced field, the handler
execution continues, otherwise, it is suspended once again.
If the handler completes, the rest of the message is parsed
without saving any state.

This approach allows the handlers to make filtering de-
cisions on incomplete messages. If, for example, filtering is
based on the content of a certain field, a handler perform-
ing such a check will be executed as soon as that field is
fully parsed. We therefore pass packets containing incom-
plete messages to the application as soon as the incremental
execution of all the handlers is complete.

One subtle issue raised by incremental execution in the
firewall scenario is that a partial field that is passed to the
application during incremental execution could trigger an
application vulnerability such as a buffer overrun to be
exploited before the full field is parsed and examined by
GAPA. To address this issue, GAPA uses a stream-based
rather than buffer-based implementation for built-in func-
tions (e.g., length functions or regular expressions) for mes-
sage fields whose sizes are unpredictable, such as a byte
sequence field that ends with some terminator symbol. In
the following example,

if (strlen(field) > 1024) ...

strlen is stream-based: the comparison completes as
soon as the engine parses a packet that causes field to
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have more than 1024 characters even if field has more
bytes to come.

The programming semantics exposed by incremental ex-
ecution to GAPAL handlers is that a message field is passed
to the application after it is parsed and the handler has been
given an opportunity to process it. This works well when a
programmer processes message fields in the order of their
arrival, which is typically the case. However, when a han-
dler implementation processes multiple message fields in
a different order from their parsing order, this can lead to
unintended behavior: a handler may be suspended as it is
waiting for a later field while the earlier potentially mali-
cious field is passed up to the application. We make the
design decision to place responsibility of avoiding such un-
intended behavior on GAPAL programmers because other-
wise, the engine would need to buffer packets until all the
message fields have arrived, resulting in unbounded state
accumulation. To help programmers follow our program-
ming semantics, we apply static analysis to identify such
occurrences in GAPAL programs. In the future, we plan to
investigate the possibility of automatically reordering code
when there are no control- or data-flow dependencies be-
tween statements.

With this semantics of the incremental execution, only
one partial field (or token) is saved across packets; and the
other completed fields that are carried by the current packet
are released immediately after the handler execution for the
packet. To bound the saved state of the partial field, we
chose to mirror the behavior of the applications, which usu-
ally involves imposing an artificial limit on the size of such
tokens (e.g., Apache has a configurable maximum header
token size [52]). We allow the programmer to specify the
maximum length of any token, as well as a global maxi-
mum for all tokens in the message, and stop parsing the
incomplete token once this length is exceeded.

Incremental execution applies naturally to session dis-
patching as well. When a message is received, we incre-
mentally execute the session identifier logic, followed by
the appropriate handler of the dispatched session. The tran-
sition between the dispatcher and the handler happens au-
tomatically at the point when enough of the session infor-
mation has been parsed to decide which session’s handler to
run.

When multiple layered specs are used, we incrementally
execute the handlers at each layer before passing a packet
onto the application, since each layer may decide to filter the
current message or session. We avoid data being buffered
at a lower layer both to reduce the memory footprint and to
ensure that filtering decisions at the upper layers can happen
as early as possible. To support this, we incrementally ex-
ecute the send operation on incomplete fields by sending
the partial field up to the upper layer after each packet.

An attacker can also perform a state-holding attack by
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Figure 2. Application state machine and
GAPA-maintained state machine

creating many concurrent sessions and causing our analysis
engine to maintain session state for each. The monitored ap-
plication can itself be attacked this way even when GAPA
is absent. Our goal is to make the engine at least as scal-
able as the application. The per-session state maintained by
the engine for parsing should be substantially less than the
per-session state in the application. To deal with an attack
using many concurrent sessions, we mirror the application
behavior. For example, if an application explicitly closes
outdated sessions, GAPA observes the socket close events
and follows suit by discarding all the corresponding session
state. The application may also use a timer to expire unused
sessions with no externally-visible action; in this case, we
use the timer support in GAPA, described below, to copy
the application behavior.

3.2 Achieving Fidelity

GAPA’s interpretation of the application communication
state must stay synchronized with that of the application
process. In the majority of cases, application state changes
are either caused by or followed by a network message, and
therefore it is easy to maintain fidelity in the GAPA state.
However, in cases of timeouts there may be a state transi-
tion without any network messages, posing a challenge for
GAPA. In this section, we discuss how we achieve better
fidelity for timeout events.

Protocol state machines often have timeout events for re-
tries or for session state cleanup, in case of remote host or
connectivity failures. If the timeout in the application trig-
gers a network event, such as a retry message or a closed
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socket, GAPA can monitor for such events and avoid main-
taining the timing itself. However, for network-silent time-
outs, GAPA has no choice but to maintain a timer. Main-
taining timing in GAPA is tricky because the timers in
GAPA may not be precisely synchronized with those used
by the application. Such inconsistencies can lead to incor-
rect analysis. Our implementation of network-silent time-
outs is incomplete, but we include our design here.

A handler in GAPA can set a timeout using the
timeout(time) built-in function. If no state transition oc-
curs when the specified time has elapsed, a timeout han-
dler is called. To cope with timing inconsistencies between
GAPA and the application, we apply bifurcating analysis as
used in Bro [45]; in addition, we assume that one direction
of the traffic comes from a trusted source. Instead of tran-
sitioning to a Timeout state, GAPA can take a transition to
a MaybeTimeout state early enough to account for timing
error tolerances (specified by the programmer). From this
point, all messages from one direction are processed along
an ambiguous path, until a message from the other direction
resolves the ambiguity. Such bifurcating analysis can be in-
corporated into the protocol state machine automatically.

For example, if an incoming message would cause a tran-
sition to state B from a non-timed out state, we use it to tran-
sition from MaybeTimeout to TimeoutOrB. If GAPA is used
to filter malicious traffic, this transition must check for mes-
sages that are potentially dangerous either on the timed out
or the normal path in the application. The response from the
application will let GAPA resolve the ambiguity and transi-
tion to the correct state.

If no traffic is received in the MaybeTimeout state, GAPA
can transition to the Timeout state after waiting long enough
to make sure that the application timeout has certainly ex-
pired, accounting for synchronization errors. Since GAPA
is run on the same host as the application, we expect these
timing tolerances can be quite small, but we have not yet
performed experiments to study this in more detail. Fig-
ure 3.2 shows the state machines maintained in the applica-
tion and the analysis engine for this example.

4 Evaluation

4.1 GAPA Safety

We evaluate the safety of GAPA using the metric of
trusted code base size. Though crude, this metric has been
applied in the past to guide research in securing other criti-
cal systems, such as the Java Virtual Machine [3]. A smaller
trusted code base is easier to analyze and is less likely to
contain security-critical bugs.

The GAPA trusted code base includes the GAPA engine,
written in C++, but excludes protocol specifications written

in GAPAL. The reason for this is that while bugs in the en-
gine can potentially cause application compromise, bugs in
GAPAL Specs will, at worst, cause incorrect protocol anal-
ysis.

We contrast this with the traditional protocol analysis ap-
proach used in tools such as the widely-used Ethereal [50]
suite of protocol analyzers. In Ethereal, both the engine and
protocol analyzers are written in C, and bugs in either can
cause application compromise. Therefore, we need to clas-
sify both components as part of the trusted code base.

A direct comparison of Ethereal and GAPA is inap-
propriate, since Ethereal includes many more components,
such as a UI and support for numerous file components.
We therefore eliminate all engine components and focus
only on the protocol analyzers. Luckily, the Ethereal code
base uses naming conventions to distinguish between broad
classes of functionality: much of the protocol-analysis spe-
cific code is in a specific sub-directory, epan/dissectors.

Looking at only the code in that sub-directory, we count
779 thousand lines of code that are used for protocol analy-
sis. This number dwarfs the size of the GAPA trusted code
base by over an order of magnitude: the GAPA engine is
only 24 thousand lines of code. Therefore, securing Ethe-
real will be a much more difficult task than securing GAPA.
This is not just a theoretical concern, either; a search for
“ethereal dissector” reveals 69 vulnerabilities recorded in
the Common Vulnerabilities and Exposures database [16].
Furthermore, this problem is likely to only get worse, as
new protocols are added to the Ethereal dissector collection.

In contrast, adding new Specs to GAPA does not affect
its security, and although our current GAPA implementation
could have some security defects, the significantly smaller
trusted code base presents a much more appealing target
for standard security best practices, such as code reviews,
penetration testing, fuzz testing, and static analysis.

Rewriting the Ethereal protocol analyzers in a general-
purpose memory-safe language, such as Java, would elimi-
nate many, but not all, of the above vulnerabilities. In par-
ticular, about a quarter of the dissector vulnerabilities result
in denial of service through excessive memory or CPU con-
sumption; these vulnerabilities would still exist. This high-
lights the importance of the resource limitations imposed by
GAPAL that make it impossible to introduce such vulnera-
bilities in protocol analyzer Specs.

4.2 GAPA Language Ease-of-Use

The goal of our GAPA language evaluation is to show
that the language is complete enough to express many im-
portant protocols and vulnerabilities in these protocols, that
the amount of effort required for the specification is rea-
sonable, and that the language features are helpful in this
task. To this end, we have specified a number of proto-
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cols: HTTP [21], RPC [47] (over both TCP and UDP),
DNS [37], SIP [26], BitTorrent [10], DHCP [18], SSH [55]
and TLS [17]. This represents a diverse collection, includ-
ing text and binary protocols, both stream- and datagram-
oriented. In all cases, we specified the protocol in at least
the amount of detail as is contained in the description of the
message format in the RFC. We also implemented vulner-
ability signatures on top of the HTTP, RPC-over-TCP, and
DNS specifications. For HTTP, we implemented signatures
for both the HostHeader [29] and the CodeRed [15] vul-
nerabilities. For RPC, we implemented a signature for the
MSBlast [38] vulnerability. For DNS, we implemented a
signature for a DoS vulnerability common to multiple DNS
implementations resulting from pointers in the DNS record
forming a loop [40], which we refer to as the pointer-cycle
vulnerability. Filtering for the pointer-cycle vulnerability
required parsing the values of the pointers and following
them until a cycle is found. This is an example of a GAPAL
filter that could not have been implemented using regular
expressions, even when the pointer values are exposed by a
DNS protocol analyzer, as is the model in numerous IDSs,
e.g., Snort [51].

In all cases, we found the specification process to be
straightforward, as we can start with an RFC using BNF,
copy-and-paste, and then annotate it with additional pars-
ing and protocol logic. We were able to construct an initial
specification for most protocols within a few hours. None of
the 9 protocol specifications required more than 300 semi-
colons (the GAPAL end-of-statement marker).

Our experience with GAPAL is that the language fea-
tures of embedded code blocks, visitors, and layering were
quite helpful. Embedded code blocks were essential in ev-
ery protocol where the length of a later field is specified
by an earlier field (e.g., BitTorrent, HTTP, and RPC). We
used the visitor syntax in all our vulnerability signatures
to avoid modifying the protocol specification itself. Fi-
nally, the layering feature made composition of logic easy.
For example, the HTTP protocol identifies the URLs in the
HTTP requests, parses and processes escapes in the URL
encoding, and passes them on to a URL parser using the
layering mechanism. The URL parser only requires 25
lines of GAPA code to filter for CodeRed. We verified that
the filter detects a real CodeRed infection packet and pro-
duces no false positives on a 500MB trace from a high vol-
ume commercial web site. Additionally, the signature natu-
rally handles CodeRed II and even polymorphic variants of
CodeRed, because it occurs after the URL has been parsed
and escapes removed.

Our experience with GAPAL is that it is a significant im-
provement over the Shield language. The Shield language
was mostly suitable for binary protocols such as RPC [47],
not text-based protocols such as HTTP [21]. Shield’s ap-
proach was to treat text messages like binary ones, using a

C-like struct, but to allow units of “offset” and “size” to be
defined as words (made of characters), in addition to bytes.
This requires manually converting the recursions and alter-
nations in BNF rules of text-based protocols to these rigid
structs, which is often very difficult. GAPAL’s use of BNF
eliminates this difficulty.

The Shield language also failed to cleanly separate pro-
tocol analysis from vulnerability filtering. The GAPA de-
sign allows maintaining a complete and well-tested protocol
specification. When a new vulnerability is discovered, the
visitor syntax makes adding a corresponding filter as easy
as adding a few vulnerability-specific checks. The visitor
syntax also makes merging vulnerability filters trivial (just
run all the visitors), and it avoids Shield’s requirement that
the specification indicate fields that do not require parsing
using the “SKIP” keyword (the GAPAL compiler instead
can use the visitors to derive the unneeded fields).

4.3 GAPA Performance

We evaluated the performance of GAPA using traces
collected in two different production networks. The
WebServer trace contains 500 megabytes of traffic from a
link connecting to a high-volume commercial web site. The
EdgeRouter trace contains 1 gigabyte of traffic from a
link connecting a subnet containing hundreds of PCs to the
rest of a large corporate intranet.

We chose three protocol analyzers for our evaluation,
HTTP, RPC, and DNS. HTTP is primarily a text-based pro-
tocol, while RPC is primarily a binary protocol. DNS is of
particular interest because it contains both variable-length
fields and pointers. We manually verified each analyzer’s
correctness on small traces.

The primary metric we use in the evaluation is through-
put for the specific protocol’s traffic after extracting it from
our trace. We chose this metric to avoid allowing the exact
fraction of the various protocols in our traces to influence
our results.

We conducted the measurements on a PC with a 3GHz
Xeon microprocessor and 2 GB of RAM. Averages and
standard deviations were taken over 10 runs. The CPU was
saturated in all cases. All measurements were taken on al-
ready reconstructed TCP streams, to focus on the through-
put of our GAPA prototype, which integrates into an end-
host above the transport layer. A larger system incorpo-
rating GAPA, such as a web server protected by a GAPA-
driven firewall on top of a host TCP stack, would naturally
have some lower total throughput reflecting the additional
work performed by the web server.

In Figure 3 we show the throughput of each protocol
analyzer with and without vulnerability signatures on the
EdgeRouter trace. (We use a box plot [14] to show the
variability between several measurements; the box contains
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Figure 3. EdgeRouter Trace
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Figure 4. WebServer Trace

the middle 50% of the data and the line represents the me-
dian.) We found that the performance of our implementa-
tion of our HTTP analyzer was within a factor of 3 of pub-
lished numbers on commercial HTTP protocol analyzers in
firewall products [24]. The addition of either the CodeRed
or the HostHeader vulnerability filters caused only minor
drops in total throughput. The throughput for RPC was sig-
nificantly greater than for the HTTP analyzer. The through-
put for the DNS analyzer was quite low, and the addition
of the pointer cycle vulnerability filter caused it to decrease
even further. The order-of-magnitude difference in parsing
rate between HTTP and DNS is consistent with the findings
of other research on protocol analyzers [43]; DNS is more
complicated to parse for protocol analyzers written in C as
well.

In Figure 4 we show the throughput of the HTTP pro-
tocol analyzer with and without vulnerability signatures on
the WebServer trace. The addition of vulnerability sig-
natures caused minor degradations in throughput, as before.
Throughput is approximately half what it was on the EdgeR-
outer trace.

The dramatic variation in bps throughput for the different
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Figure 5. Comparison of throughput using to-
kens per second

protocol analyzers, and for the same protocol analyzer on
different traces, can be explained by the complexity of the
analysis being performed. In Figure 5, we show the number
of tokens generated each second by the various protocol an-
alyzers. The throughput in tokens per second is much closer
across protocol analyzers than it is in bps. This suggests that
the current dominant performance costs in our design are all
per-token costs.

We first analyze the difference in throughput of the
HTTP analyzer on the two different traces. Although the
throughput in bps is higher on the EdgeRouter trace,
the analyzer is parsing more tokens per second in the
WebServer trace. Manual inspection revealed that the av-
erage packet length in the WebServer trace is only 446
bytes, approximately half that of the EdgeRouter trace.
Because the HTTP analyzer treats the body of the HTTP re-
quest as an opaque array of bytes, the body is much faster to
parse than the headers. In the WebServer trace, the bod-
ies were much shorter, leading to less throughput under the
bps metric. A similar effect explains the higher throughput
in bps for the RPC analyzer when compared to the HTTP
analyzer: the RPC bodies are longer than the HTTP bodies,
leading to a higher throughput in bps.

The DNS analyzer’s parsing rate in tokens per second is
comparable to the parsing rate of HTTP. The difference in
tokens per second seems largely due to the need for addi-
tional code blocks for determining the meaning of parsed
fields. In particular, distinguishing between record names
and record pointers, and switching appropriately, required
examining individual bytes using the interpreted language
much more often than was the case for HTTP headers. This
explains the difference between the tokens per second rates
for the two analyzers. The much larger difference in bps is
explained simply by the fact that DNS has no large “body”
against which the parsing costs can be amortized.

In Figure 6, we analyze the current costs of the various
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components of the GAPA engine. The label “Grammar”
refers to BNF-directed parsing. “Interpreter” refers to time
executing handlers and embedded code blocks. “Shared-
Namespace” refers to time spent reading and writing the
grammar variables by the handlers and embedded code
blocks. “RegEx” refers to time spent in the regular expres-
sion matching library. “Other” refers to memory allocation,
copying, and initialization costs.

In the two lower throughput cases (HTTP-Web and
DNS), we find that a significant fraction of time is going
to the BNF-directed parsing and to the interpreter. In the
two higher throughput cases (HTTP-Edge and RPC), we
find that most of the CPU time is going to memory alloca-
tion, copying, and initialization costs. The CPU cost of in-
terpreter initialization already incorporates the optimization
of sharing interpreted code across sessions, so the remain-
ing cost is simply allocating and initializing data. Although
previous work on interpreters [46] has found that they of-
ten impose slowdowns ranging from a factor of 10 to over a
factor of 100, the combined cost of the grammar interpreter
and the C-subset interpreter is the dominant problem only
for the lower throughput cases (HTTP-Web and DNS). For
the higher throughput cases (HTTP-Edge and RPC), the ma-
jor bottleneck is the classic problem of memory allocations
and copies. In all cases, regular expression matching was
a small fraction of overall CPU overhead. Our estimation
is that all of the areas except regular expression matching
are open to significant additional optimization. Compila-
tion techniques seem like a particularly promising approach
to performance improvement.

5 Related Work

5.1 Languages and Frameworks for Pro-
tocol Design, Verification and Imple-
mentation

Many languages and frameworks have been developed
for protocol design, verification and implementation. Pro-

tocol analysis only aims to decode communication sessions
of already-implemented and deployed protocols, and so can
forgo functionality required in these other domains, e.g., dy-
namically allocating new ports or generating response pack-
ets. In this subsection, we explain how GAPA is better
suited to the task of protocol analysis.

Languages based on formal methods [4], such as Es-
telle [12], Promela++ [6], LOTOS [53], and SDL [48] were
originally targeted at protocol specification, emphasizing
validation and verification of protocol logic through the use
of finite state machines. StateCharts [27] and Esterel [8] are
formal method-based languages that are more suitable for
implementation. RTAG [2] (real-time asynchronous gram-
mars) is also such a language, though it uses a context-free
grammar to define the protocol behavior. GAPAL’s use
of finite state machines with code-directed transitions has
close parallels in some of these languages, e.g., Esterel’s
use of code to decide the next state. However, these lan-
guages do not provide built-in abstractions for specifying
protocol message formats. For example, in both the Esterel-
based [13] and RTAG-based [2] TCP implementations, the
TCP protocol state machine is specified in Esterel/RTAG,
but packet access and manipulation have to be coded in
C. GAPAL provides BNF with embedded code blocks for
message format specification. Compared to C-based data
manipulation, GAPAL provides memory safety and DoS re-
silience, e.g., GAPAL does not allow general-purpose loops
or dynamic memory allocation.

Kohler et al [34] proposed Prolac, a statically-typed,
object-oriented language for network protocol implementa-
tion, with the goal of improving readability, implementabil-
ity, and extensibility. Prolac can be used to implement any
network protocols, while GAPAL is more special-purpose
with explicit, built-in support for abstractions needed for
protocol analysis (message parsing, protocol state machine,
visitors, layering, session dispatching). Like other protocol
implementation languages, Prolac supports arbitrary recur-
sion, while GAPAL does not.

The x-Kernel framework provides protocol, session,
and message objects along with a set of support routines
for buffer management, identifier mapping, and timers.
Through this uniform interface among protocols, x-Kernel
aims to improve the structure and performance of proto-
col layering. In accordance with GAPA’s focus on proto-
col analysis rather than implementation, GAPA provides
very different operations on protocols, sessions and mes-
sage. For example, GAPA supports message parsing using
BNF with embedded code, while x-Kernel supports mes-
sage parsing by providing library functions that efficiently
add or remove headers as a message moves down or up
the protocol stack; GAPA uses the abstraction of a proto-
col state machine to track protocol state, while x-Kernel
uses the protocol object to organize functionality (e.g., the
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IP layer code is in the IP protocol object). Furthermore,
GAPAL’s type safety and DoS resilience are absent in the
C-based x-Kernel.

Protocol conformance testing tools also share some sim-
ilarities with GAPA, as they also must parse protocol mes-
sages and verify certain properties. However, testing sce-
narios differ from the context of firewalls or intrusion de-
tection systems, as there is no need to worry about adver-
sarial traffic trying to compromise or DoS the testing tool.
Indeed, testing tools do not even need to operate online:
Bishop et al [9] perform detailed conformance checking on
TCP traces at 500 bps. The different emphasis in domain
also manifests itself in the language design: Bishop et al
choose a language offering logic operations, such as quanti-
fiers, while GAPAL includes BNF with embedded code and
other features to facilitate protocol analysis.

5.2 IDS/Firewall Languages

Snort and HogWash [51] use regular expressions as rules
for matching malicious network input. To obtain more pro-
tocol context for such matching, they support protocol ana-
lyzers written in C as plug-ins. As discussed in Section 1,
using C incurs both a high development cost and a high se-
curity risk.

The Bro [45] language is designed to specify network
monitoring and intrusion detection policies based on known
attack behaviors, such as port scanning. The Bro language
does not support implementing protocol analysis, but the
Bro system allows incorporating protocol analyzers written
in C.

The Binpac [43] language has similar goals to GAPAL
and naturally shares many of its features (the Binpac authors
reference our early design document [11] in their work).
Binpac is intended to perform message parsing only, pro-
viding an interface for analyzers written in a language such
as C++, where GAPAL encompasses both parsing and reac-
tion. Binpac is also compiled to C++ and uses C++ for parts
of its parsing logic. For our purposes, C++ poses an unac-
ceptable safety risk and we use our interpreted language for
this purpose instead.

5.3 Data Description Languages

GAPAL is more than a data description language; it also
includes protocol analysis-specific features such as the pro-
tocol state machine, layering, and visitors. In this section,
we compare the message format part of the GAPAL design
to previous work.

ASN.1 [19], NDR [47], and USC [42] target describ-
ing binary data structures. Datascript [5] and Packet-
Types [35] specify binary data and enhance the specifica-
tion with predicate-directed parsing. We found that text-

based protocol messages can be more easily expressed us-
ing BNF with embedded code blocks; a more detailed dis-
cussion can be found in our ease-of-use evaluation in Sec-
tion 4.2. Parser generators such as Yacc [33], ANTLR [44]
and JavaCUP [30] use BNF and embedded code for pars-
ing; GAPA additionally provides support for protocol anal-
ysis specific abstractions and a type-safe DoS-resilient lan-
guage for the embedded code blocks. A somewhat orthog-
onal piece of work is Erlang’s bit syntax [41], an Erlang
language extension that supports binary pattern matching.

Recently, PADS [22] was proposed as a domain-specific
language for specifying both text and binary data. Their
goal is rapid parser generation for many kinds of ad hoc
data such as web logs, finance records, firewall rules, etc..
Despite some differences in language appearance, PADS is
similar to the message format specification part of GAPAL:
GAPAL’s use of BNF with embedded code block is mir-
rored by PADS’s use of “switched PUnion” and code-
directed parsing. Both GAPAL and PADS target text and
binary data, and both arrived at a similar parsing design.

5.4 Packet Filters and Other Systems

Packet filters [36, 20, 7, 32] are programmable criteria
for classifying or selecting packets from a packet stream
based on headers for protocol layer 4 or below. Because of
packet filters’ emphasis on speed, they expose only simple
rules for packet classification, such as predicates on byte
values at fixed offsets. This makes them inappropriate for
protocol analysis above the transport layer, which requires
parsing multi-packet messages and keeping track of proto-
col state.

SPINE [23] and FLAME [1] are systems designed to al-
low untrusted code to process network messages in the ker-
nel. They maintain isolation from arbitrary memory access
within the kernel by using type-safe languages (Modula-
3 and Cyclone, respectively), and they guard against un-
bounded CPU consumption by using timeouts. GAPAL’s
protocol-analysis specific abstractions and the analysis en-
gine’s built-in support for a stream processing model are ab-
sent from SPINE and FLAME. Also, SPINE and FLAME’s
timeout approach to DoS-resilience was inappropriate for
our target scenario of a firewall; timeouts may lead to false
positives.

Proof-Carrying Code [39]is a technique for conveying
program properties like type safety or bounded execution
time. If GAPA were compiled to machine code, instead of
being interpreted, Proof Carrying Code would be a promis-
ing technique for avoiding a trusted compiler.
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6 Concluding Remarks

Protocol analysis is important in numerous applications,
such as intrusion detection, firewalling, and network moni-
toring. We have presented the design, implementation, and
evaluation of a generic application-level protocol analyzer,
GAPA, and its language. GAPA is the first system that al-
lows rapid development of protocol analyzers while provid-
ing memory safety and DoS resilience. To achieve these
properties, GAPAL uses techniques such as BNF with em-
bedded code blocks, visitors for separating parsing-specific
and task-specific logic, incremental execution, and layering.
Our evaluation indicates that GAPAL is safe, expressive and
easy to use and our GAPA system prototype can handle an
enterprise client HTTP workload at up to 60 Mbps, suffi-
cient performance for many end-host firewall/IDS scenar-
ios.
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