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ABSTRACT
Widespread growth of open wireless hotspots has made it easy to
carry out man-in-the-middle attacks and impersonate web sites. Al-
though HTTPS can be used to prevent such attacks, its universal
adoption is hindered by its performance cost and its inability to
leverage caching at intermediate servers (such as CDN servers and
caching proxies) while maintaining end-to-end security.

To complement HTTPS, we revive an old idea from SHTTP, a
protocol that offers end-to-end web integrity without confidential-
ity. We name the protocol HTTPi and give it an efficient design that
is easy to deploy for today’s web. In particular, we tackle several
previously-unidentified challenges, such as supporting progressive
page loading on the client’s browser, handling mixed content, and
defining access control policies among HTTP, HTTPi, and HTTPS
content from the same domain. Our prototyping and evaluation
experience show that HTTPi incurs negligible performance over-
head over HTTP, can leverage existing web infrastructure such as
CDNs or caching proxieswithout any modifications to them, and
can make many of the mixed-content problems in existing HTTPS
web sites easily go away. Based on this experience, we advocate
browser and web server vendors to adopt HTTPi.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms
Security
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1. INTRODUCTION
The same-origin policy [30] (SOP) is the key access control pol-

icy for the web and browsers. SOP defines a principal model where
web sites are mutually distrusting principals [35,36], and where one
site’s script cannot access another site’s content. However, the au-
thenticity of the principal and the integrity of its content are often at
question since much of the web is delivered over HTTP rather than
HTTPS. Consequently, network attackers can carry out man-in-
the-middle attacks and undermine browsers’ access control, even if
browsers flawlessly implement the enforcement of the same-origin
policy. Such attacks are highly practical today with the prevalence
of wireless hotspots and insecurity in the DNS infrastructure [16].
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The web requiresend-to-end securityto allow meaningful SOP en-
forcement in browsers.

HTTPS [28] can prevent network attacks. However, its univer-
sal adoption is hindered by two deficiencies of HTTPS: its perfor-
mance cost and its uncacheability at intermediate servers. Regard-
ing performance, although GMail has recently demonstrated the
ability of serving HTTPS content with low overhead using com-
modity hardware [23], a general applicability of their solution to
other SSL setups is still not clear [3]. Web caching offers signif-
icant benefits to web sites and users. It enables web sites to save
bandwidth costs and to reduce latency for users by outsourcing in-
frastructure to CDNs and offloading requests to CDN servers. Al-
though CDNs do offer services for HTTPS content [6], this carries
the cost of trusting CDN servers to be man-in-the-middle and los-
ing end-to-end security. Furthermore, such services come with a
hefty charge of up to $3,000 per month plus bandwidth costs [13].
Caching proxies can also deliver web content significantly faster to
large user communities behind gateways or firewalls, such as mo-
bile users. HTTPS content cannot take advantage of these proxies
at all today. We observe that much of the web is cacheable (Sec-
tion 7.1), and we expect significant growth in cacheable web con-
tent as rich media proliferates [2]. To achieve an end-to-end secure
web, HTTPS is definitely not the complete answer.

Fortunately, end-to-end security, cacheability, and performance
are not at conflict inherently. End-to-end security encompasses (1)
end-to-end authentication (i.e., content comes from the right ori-
gin1) (2) end-to-end content integrity (i.e., content is not tampered
with), and (3) end-to-end content confidentiality (i.e., content is
kept private). For the browser platform to meaningfully enforce its
access control policy, only authentication and integrity are needed,
and confidentiality isnotrequired. Without confidentiality, the con-
tent can be cached at intermediary web servers. HTTPS provides
all three properties simultaneously and is hence not cacheable.

To complement HTTPS and address its deficiencies, we advo-
cate a new protocol, calledHTTPi, which offers end-to-end web in-
tegrity without confidentiality. While this is an old idea which first
appeared in the signature mode of operation in SHTTP [29] (which
was a proposal that unsuccessfully competed with SSL and HTTPS
in 1999), the development of this idea has stayed at the algorithmic
level. In this paper, we give it an efficient and practical system
design and implementation that can be easily deployed in today’s
web. In particular, we tackle severalpreviously-unidentified chal-
lenges, such as supporting progressive page loading on the client’s
browser, designing browsers’ policies for handling of mixed end-
to-end secure and insecure content, and defining access control
policies among HTTP, HTTPi, and HTTPS content from the same
domain.

We have built an end-to-end prototype to evaluate HTTPi. On

1The binding between the origin and its public key is provided by
certificate authorities. Client authentication is at the discretion of
web sites.



the browser side, we implemented the HTTPi protocol for Internet
Explorer (IE) using IE’s Asynchronous Pluggable Protocol exten-
sion mechanism. On the server side, we implemented HTTPi sup-
port in IIS 7 as well as in an HTTP proxy that can be placed in
front of origin web servers. We implemented HTTPi over the exist-
ing HTTP protocol, so that no changes are required at intermediate
nodes, such as CDN servers or caching proxies.

Our measurements indicate that HTTPi incurs an acceptable ver-
ification and one-time signing overhead with our unoptimized im-
plementation. This cost is quickly amortized over many requests;
for example, a typical web server deployed on Amazon EC2 achiev-
ed a 4.06x higher throughput for static content served over HTTPi
(and signed offline) than over HTTPS, and HTTPi’s throughput is
negligibly lower than that of HTTP.

To evaluate the caching benefits that HTTPi brings to web sites,
we measured cacheability on today’s web. We found significant ca-
cheable content from both HTTP and HTTPS, which makes HTTPi
compelling. With much of existing HTTPS content being cacheable,
that content can be safely turned into HTTPi content for better per-
formance and for the ability to be offloaded to other servers without
any loss of security. In fact, many existing HTTPS sites contain
HTTP content including scripts and images. Such mixed-content
pages often contradict a site’s intent to defend against network at-
tackers. This is precisely due to the cost of enabling HTTPS for
such existing HTTP content. It would be much easier to turn HTTP
content contained on HTTPS sites into HTTPi content, which will
achieve the end-to-end security desired by these sites.

2. DESIGN OVERVIEW
We set the following goals for the HTTPi design:
• Guarantee of end-to-end integrity: Our design should ensure

that the integrity of the rendered content is always main-
tained. For example, a network attacker should not be able to
inject or remove content, or have adverse impact on browser-
side rendering of content.

• Easy adoption: HTTPi should fit seamlessly into the cur-
rent web infrastructure. In other words, the design should
be transparent to the intermediate web servers (such as CDN
servers and HTTP web proxies) and should involve minimal
changes to servers and browsers.

• Negligible overhead over HTTP: The design should incur
negligible overhead over HTTP in computation, bandwidth,
and user-experienced latency.

Note that intermediate servers could legitimately need to modify
web content, such as for personalization or content filtering in en-
terprises. Transmitting content over HTTPi instead of HTTP would
prevent such modifications. We argue that the guarantee of integrity
must be end-to-end, and any intermediate modifications should be
explicitly approved by the one of the endpoints (for example, by
sharing the private and public key pair of an endpoint).

To guarantee end-to-end integrity and to minimize latency and
overhead, we use a content-signature-based scheme that allows pro-
gressive content loading and at the same time is robust to any injec-
tion attacks, as described in Section 3. In Section 4, we present our
design on how HTTPS, HTTPi and HTTP content can be mixed to-
gether and how web sites can express restrictions on mixed content
to browsers. In Section 5, we design the access control policy that
browsers should enforce across HTTPS, HTTPi and HTTP content.

To ease adoption, we implement HTTPi over the existing HTTP
protocol so that intermediate web servers can cache HTTPi con-
tent seamlessly. Web browsers can show “httpi” in the address
bar, but the messages on the wire speak HTTP. We use a new
Integrity header to indicate the use of HTTPi as the protocol.
The integrity header also carries the signature for HTTP headers

(excluding the integrity header itself, of course). We use the exist-
ing Strict-Transport-Security header to prevent strip-
ping attacks (Section 3.3) and the existingX-Content-Secur-
ity-Policy header to allow web sites to configure mixed con-
tent policies (Section 4). Signatures for the HTTP response body
are in-band in the body itself. Our server-side and client-side imple-
mentation of HTTPi uses public interfaces, requiring no modifica-
tions to core functionality of the server or the browser (Section 6).

3. SUPPORT FOR PROGRESSIVE
CONTENT LOADING

A protocol scheme that ensures message integrity needs to sat-
isfy two requirements. First, the identity of the server sending the
content needs to be authenticated and second, the content needs to
verified for integrity. HTTPi uses a content-signature-based proto-
col scheme to satisfy these requirements.

In a strawman design, HTTPi could sign the hash of anentire
HTTP response: The server first creates a cryptographic hash (e.g.,
SHA1) of the whole response and then signs the hash using the
server’s private key. The hash and its signature are then passed to
the client along with the response. At the client side, the browser
waits for the entire response to arrive, calculates its hash, and com-
pares the value with the signed hash to authenticate the server and
verify the response.

A key limitation of this design is that the browser would have
to wait for the entire response to arrive before being able to verify
the content integrity and dispatch the content for rendering. Conse-
quently, this would disrupt the existing progressive content loading
mechanisms in browsers, servers, and the HTTP protocol, and the
user would experience longer delays before seeing any content.

We designed HTTPi to allow progressive content loading by us-
ing HTTPi segments. Before describing this design, we first pro-
vide some background.

3.1 Existing Progressive Content Loading
Mechanisms

Current browsers support progressive loading of web content, at-
tempting to render data as soon as it arrives from the network. The
amount of data available at a time is determined by the underlying
TCP congestion control and network conditions as well as server
load. HTTPS content can also utilize progressive loading, espe-
cially if a site uses a stream cipher.

Complementing browsers’ progressive content loading, servers
may start sending the response before completing the processing of
a request, and therefore before knowing the entire response body.
To this end, servers often use HTTP chunked transfer encoding [15]
and encode each piece of available response data in a chunk, which
consists of its own length and body. A web server typically uses
chunked encoding in two scenarios: (1) content is static, but its
retrieval (e.g., from the server database) or processing is slow, and
(2) content is dynamically generated with a chunk being a logical
boundary. Chunks are sent as soon as they are available, inband in
the body of the same HTTP response. Note that a particular chunk
may not arrive at the client in one shot, but possibly be further
broken into pieces due to network congestion. Nevertheless, the
browser can consume partial chunks progressively.

3.2 HTTPi Segments for Progressive Content
Loading

In HTTPi, the key challenge in supporting progressive content
loading is to configure a sensible granularity of content verification.
This design must (1) leverage browsers’ progressive content load-
ing; (2) be compatible with HTTP chunked transfer encoding; (3)
be resilient to the underlying TCP congestion control, which cannot
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Figure 1: Protocol Scheme in HTTPi for (a) static content (b) dy-
namic content.A1, A2, ..., Am andB1, B2, ..., Bn represent segments
for Chunk 1 and 2, respectively. X1 and X2 represent concatenated
hashes evaluated over the segments of Chunk 1 and 2, respectively. XH

represents concatenated hashes over all HTTP headers.URLreq is the
requested URL, andT is the timestamp. The figure shows the order in
which content is sent in the response body.

be predicted by servers in an offline fashion; (4) allow cacheabil-
ity; and (5) incur low overhead. We use the termHTTPi segmentto
refer to the unit of verification in HTTPi. LetS denote the size of
an HTTPi segment.

Using HTTP chunk size asS would still be too coarse-grained.
An HTTP chunk can be arbitrarily large, leading to same problems
as with the strawman solution described above.

If a server could predict how much data arrives at its clients, it
could enable verification for just that data. For a single, live con-
nection, a server can indeed do this by obtaining the current TCP
congestion control window size and the receiver window size from
the network layer. However, because of dynamic network condi-
tions, such prediction would not work well for requests at different
times or from different users and would defeat cacheability. There-
fore,S needs to be a constant.

We choose to use the typical TCP segment size (1400 bytes) for
S. TCP segment is the unit of TCP transfer. The rationale here is
that the browser will need to wait forat mostone packet to arrive to
receive a full HTTPi segment, perform the verification and render
the segment. This wait is as minimal as it can get.

Although an HTTPi segment is the unit of verification, it need
not be the unit of signing. In our design, we amortize the sign-
ing cost over multiple segments in the response body. More con-
cretely, whenever a web server has some HTTP response data ready
(whether it is the entire HTTP response or an HTTP chunk), for
everyS bytes, we take a hash, and then we compute the signa-
ture for multiple hashes concatenated in the right sequence. For
HTTP headers, we hash each header and use a single signature
over these hashes, since browsers do not consume partial header
values. We further amortize the signing cost by signing the hashes
of HTTP headers along with the hashes of HTTP content using a
single signature. We put content hashes and signatures inband with
the response body. We rejected putting signatures and hashes in an
HTTP header, because our scheme needs to support HTTP’s chun-
ked encoding, where chunks after the first one do not carry headers.
For responses using chunked encoding, we maintain the chunked-
encoding header, prepend HTTPi’s metadata (such as signatures
and hashes) to each chunk body, and recalculate each chunk’s length.
This preserves compatibility with intermediate proxies.

The application determines signing granularity based on whether
the content being signed is known in advance (i.e., static content),
or is generated on the fly (i.e., dynamic content). Figure 1 illus-
trates our protocol. In Figure 1(a), for static content, we amortize
the cost of signing by using a single signature over segments for
all chunks generated (e.g.,X1 andX2 in a single signature). For

dynamic content, the hashes are computed at the time of content
generation. The signature is calculated over all the segments of a
single chunk (Figure 1(b)). The sequence of hashes for the headers
(XH ) is placed only in the first signature. We also place the URL of
the requested page (URLreq) in the first signature and the current
timestamp (T ) in each signature as a preventive measure for certain
attacks (Section 3.3).

Note that for static content, signing can be done offline. For dy-
namic content, signing incurs a computation overhead of one SHA1
computation per 1400 bytes, resulting in the bandwidth overhead of
just 1.4% (20/1400). The signature overhead is one signature per
chunk for dynamic content. We will show in Section 7 that much
of the web is static and cacheable, and that HTTPi incurs negligible
overhead over HTTP.

Any segment that fails the integrity check is not rendered. In
such cases, the browser informs the user about the integrity failure
and removes the security indicator from the page. For JavaScript,
we do not perform progressive content loading because today’s
JavaScript engines require an entire script to be received before
starting its execution.

3.3 Security Analysis and Design
Enhancements

Out-of-sequence Segments.The segment hashes are arranged
in a sequence before signing. If a network attacker tries to reorder
the segments, the hash sequence would break and signature verifi-
cation would fail.

Injection and Removal Attacks. Attackers will not be able to
launch injection attacks successfully because the injected content
will not be verified by the browser. Removal attacks cannot happen
to the segment group of a signature for the same reason.

Nevertheless, removal attacks can happen across signature groups
(a set of chunks for static content or a single chunk for dynamic
content). When HTTP chunks are used by a server, each signature
group will have a set of HTTPi segments and a signature for them.
A network attacker can remove a signature group without being no-
ticed at the client. To address this issue, we insert the hash of the
last segment of the previous chunk at the beginning of the hash se-
quence of the current chunk (Figure 1(b)); we also insert the header
hash at the beginning of the hash sequence of the first chunk.

Content Replay. Network attackers could mix-and-match old
content and new content to cause disruptions. Our design pre-
vents such attacks by placing a timestampT in each signature. For
HTTPi responses involving multiple signatures, the browser must
verify that the timestamp is the same across all signatures.

The network attackers could alternatively replay a completely
different response for a requested resource. To thwart this attack,
the browser verifies its own value of the requested URL against the
signedURLreq value.

Stripping Attacks. Both HTTPS and HTTPi are prone to “strip-
ping” attacks that hijack a user’s initial insecure HTTP request and
remove redirects to secure content. Although it is possible to notice
stripping attacks by manually checking browser security indicators,
users often ignore these indicators [31]. The HTTP Strict Transport
Security protocol (HSTS) prevents these attacks by allowing web
sites to specify a minimum level of security expected for connec-
tions to a given server. The policy can be delivered via an HTTP
header [20]. To prevent attacks on the user’s first visit to the site,
the policy can also be delivered via DNSSEC [22]. We use an ex-
tension to HSTS,allowHTTPi, to allow servers to specify HTTPi
as the minimum level of security. TheallowHTTPi token is ap-
pended to the server’s existingStrict-Transport-Securi-
ty declaration. Older browsers that do not support HSTS will ig-
nore this header, while older browsers that support HSTS but not
our extension will default to HTTPS for all content.



Denial of Service.HTTPi is vulnerable to denial-of-service at-
tacks where a network attacker strips off the integrity header from
the response, preventing the content from being rendered. Alterna-
tively, the attacker can allow some but not all response segments
through to the browser. This could potentially corrupt the appli-
cation’s internal logic. For example, the attacker could strip off
JavaScript that alters page layout. One possible countermeasure is
to use a timeout for inter-segment arrival at the client and raise an
integrity failure alert when this timer expires. However, this re-
quires estimating typical inter-arrival time for each client, which
may not be reliable. We choose to allow the browser to wait in-
finitely for packets to arrive. If the user clicks on stop, we alert
the user that the content is incomplete. Since we do not execute
JavaScript until it is fully received, partially rendered JavaScript
would not be an issue for a site’s integrity.

4. MIXED-CONTENT TREATMENT IN
BROWSERS

The mixed content condition occurs when a web developer refer-
ences an insecure (HTTP) resource within a secure (HTTPS) page.
This puts the privacy and integrity of the otherwise secure page at
risk, because the insecure content could be modified by a network
attacker. Scripts are particularly problematic because they run with
priveleges of the including page, and malicious scripts could read
or alter content delivered over a secure connection.

Browsers differ in how they handle mixed content. IE 8 and be-
low prompt the user before displaying mixed content, while Firefox
and Chrome show a modified browser lock icon. From a security
standpoint, the best behavior would be to block all insecure con-
tent in secure pages without prompting the user. IE9 enforces this
behavior on scripts and stylesheets, but not images; this policy is
similar to the one proposed by Gazelle [36]. However, automati-
cally blocking insecure content carries serious compatibility impli-
cations. It might confuse the user, since pages relying on insecure
resources could appear broken. Worse, the user might think that a
broken page indicates a bug in the browser and switch to an older
version or to a completely different browser to fix it.

We argue that mixed-content vulnerabilities should be fixed by
web developers, both for security and user-experience reasons. Web
developers have a better understanding of impact that embedded
content can have on their site’s security. They are also in a bet-
ter position to develop a user-friendly fallback mechanism in case
some content fails a security check and is not rendered.

By default, we require that all active content embedded in HTTPi
and HTTPS pages, such as scripts and stylesheets, be rendered
over HTTPi or HTTPS. To allow web applications to customize
this default behavior, we use an HTTP header that is compatible
with the Content Security Policy (CSP) [33] header to specify the
server’s end-to-end integrity requirements for dependent resources.
The CSP policy syntax is convenient for our purposes, as it already
allows sites to specify which origins they want to include content
from. An example policy may be:

X-Content-Security-Policy:
allow https://login.live.com

httpi://*.live.com:443

The policy above informs the browser that all embedded resources
from login.live.com should be retrieved over HTTPS and
content from all other subdomains oflive.com needs to be down-
loaded over HTTPi. If the servers hosting the embedded content do
not support the corresponding protocol, then the content is consid-
ered unsafe as per the web page’s requirements and hence should
not be rendered by the browser. Our design also supports finer-
grained integrity requirements, i.e., at the level of resource types

or specific resources themselves. However, specifying such finer
policies must be done sensibly, as it increases bookkeeping at the
server and could break existing interactions within embedded con-
tent if policies are specified incorrectly.

The CSP syntax provides an excellent way for web developers
to handle mixed content, and it does not require changes to web
application code. The latter would require explicitly modifyingall
insecure references of embedded resources, which is not only time-
consuming but also difficult to do correctly. A secure (HTTPS or
HTTPi) URL could return a redirect to an insecure resource, which
could be difficult to detect by examining the DOM alone. More-
over, a script delivered over a secure channel could still make ref-
erences to insecure content. In our design for HTTPi, the browser
enforces policies specified by CSP for all statically or dynamically
generated URLs.

5. ACCESS CONTROL ACROSS HTTPS,
HTTPI, AND HTTP CONTENT

HTTPi content can be embedded in an iframe through the use of
the “httpi” scheme, such as<iframe src=’httpi://a.com/’>,
or through the use of an additional iframe “integrity” attribute, such
as<iframe src=’http://a.com/’ integrity>. The former
presentation is consistent with other protocol schemes. The latter
has the benefit of safe fallbacks for backward compatibility; on an
older browser, HTTPi content would simply render as HTTP con-
tent2. Note that regardless of representation, the network messages
are still sent over HTTP to be backward compatible with the exist-
ing web caching infrastructure.

The same-origin policy labels principals with the origin defined
as the triple of<protocol, domain, port> [35,36]. Therefore,
content from the same domain and port number but with different
protocols is rendered as separate principals, which can only com-
municate explicitly through messages (i.e.,postMessage [7]).

In this section, we consider the default interaction and access
control model for HTTPS, HTTPi, and HTTP content served from
the samedomain and port. For example, a top-level HTTPi page
may embed two iframes, one containing HTTP content and the
other containing HTTPS content, and all three pages are from the
same domain and port. Here, following SOP is safe, but it dis-
allows all interaction among HTTP, HTTPi, and HTTPS content.
Instead of direct function calls or accesses to DOM objects, de-
velopers would be forced to layer such interaction on top of asyn-
chronouspostMessage-based protocols, which carries extra mar-
shalling costs and may be hard to design correctly, as illustrated by
recent flaws found in Facebook Connect and Google Friend Con-
nect [19]. Consequently, a developer may be discouraged from con-
verting some content on an HTTPS site into HTTPi to benefit from
its cacheability properties.

As a concrete example, consider an online shopping site that is
rendered over HTTPS to protect users’ private data such as credit
card information. The site presents users with a map to select a
site-to-store pick-up location during checkout. It may be desirable
to deliver the store information and map content over HTTPi, but
this raises a problem of allowing the HTTPS part of the site to read
the store selection made by the user, an interaction that would be
disallowed by SOP. As a result, the site’s developers may be forced
to refactor their code to usepostMessage.

We observe that the SOP semantics are more restrictive than ac-
tually required to ensure security for such scenarios. Our goal is
to allow legitimate communication while preserving the security
semantics, namely the confidentiality and/or integrity, of the ren-

2A site could also specify an HTTPS URL in the ’src’ attribute to
use HTTPS fallback
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dered data. Our default communication policies are inspired by the
combination of the Bell LaPadula [9, 10] and Biba [11] models.
It is important to note that our goal isnot to enforce information
flow invariants often associated with those models (e.g., frames of
any origin can already freely communicate viapostMessage), but
rather to use these models to determine a secure and convenientde-
fault isolation policy for our setting. We summarize these models
as the following set of rules:

Bell LaPadula model (for confidentiality):
• The Simple Security Property: a subject at a given security

level may not read an object at a higher security level (no
read-up).

• The *(star) property: a subject at a given security level must
not write to any object at a lower security level (no write-
down).

Biba model (for integrity):
• The Simple Integrity Axiom: a subject at a given level of

integrity may not read an object at a lower integrity level (no
read down).

• The * (star) Integrity Axiom: a subject at a given level of
integrity must not write to any object at a higher level of in-
tegrity (no write up).

In view of these models, we represent the three protocols (HTTP,
HTTPS and HTTPi) by two confidentiality levels (Chigh and Clow)
and two integrity levels (Ihigh and Ilow), which models the high
and low requirements for confidentiality and integrity, respectively.
HTTPS can be realized by the tuple<Chigh, Ihigh >, HTTPi by
<Clow, Ihigh> and HTTP by<Clow, Ilow>. Using this model, we
define the access control rules across HTTP, HTTPi, and HTTPS as
follows:

HTTPS and HTTP. HTTPS’ confidentiality label Chigh is higher
than HTTP’s confidentiality level Clow, thus resulting in “no read
up, no write down” requirement of the Bell LaPadula model. The
integrity levels of HTTPS and HTTP, Ihigh and Ilow respectively,
with Ihigh > Ilow, results in “no write up, no read down” condition
of the Biba model. Combining these two requirements results in no
reads or writes to either side being allowed between HTTPS and
HTTP. This derivation is consistent with the SOP.

HTTPi and HTTP. Since confidentiality levels of HTTPi and
HTTP are equal, only the integrity levels enforce the “no write up,
no read down” policy from the HTTPi content to HTTP resources
(Figure 2). Firstly, this implies that a script belonging to the HTTPi
principal can write to the HTTP part of the page without reading
its content. One reason to prevent an HTTPi script from reading
HTTP content is to prevent the HTTP input from influencing the
logic within the HTTPi content. However, an HTTPi script might
still desire to read the HTTP page to identify the DOM element to
write to. So, our requirement is to allow the read operation on the
HTTP content without allowing the logic of HTTPi content to be

affected. One way to realize this is by performing a complete in-
formation flow check in the HTTPi code, which might not be prac-
tical. We use an alternative approach in which the HTTPi content
itself writes the code for reading the HTTP content, and this code
is injected into the HTTP content. This injected code runs within
the HTTP principal and hence can freely read and write to the con-
tent. Since HTTPi relinquishes the transferred code to the HTTP
integrity level (Ilow), that code cannot affect the logic of HTTPi’s
own code, though it still can read from HTTPi content. Secondly,
HTTP can read the HTTPi content, but cannot write to it. We re-
alize this in our design by providing only a shadow copy of the
HTTPi content to HTTP, with no direct reference to real HTTPi
objects.

HTTPS and HTTPi. Since HTTPS and HTTPi integrity lev-
els are equal, only the confidentiality levels force the “no read up,
no write down” rule from HTTPS to HTTPi resources (Figure 2).
Both read and write operations can be realized similarly to the pre-
vious scenario. We allow HTTPi content to write to HTTPS since
the code for HTTPi is at the same integrity level as HTTPS con-
tent and written by the same developers. HTTPi scripts can write
the code for reading the HTTPS content into the HTTPS’ DOM and
effectively, that code becomes part of the HTTPS principal. This al-
lows reading of the HTTPS code by the injected code without leak-
ing any of the read data back to HTTPi’s main code. For reading
HTTPi content without allowing any write, a shadow of HTTPi’s
DOM is provided to HTTPS. Coming back to the shopping site ex-
ample earlier in this section, this rule would allow HTTPS content
to read the store selection made by the user and correspondingly
send the merchandise to the selected store.

6. IMPLEMENTATION
HTTPi requires both browsers and web servers to adhere to the

protocol. Accordingly, our implementation consists of server-side
and client-side modules. Figure 3 shows the high-level architec-
ture of our system. Our server-side implementation consists of an
HTTPi Transformer, which implements content hashing, segmen-
tation, and inclusion of the integrity policy requirements for HTTP
responses. Our client-side implementation consists of three mod-
ules that we add to IE8: (1) theHTML content filtertransforms
a given page to adhere to integrity policy requirements, (2) the
HTTPi protocol handlerprocesses incoming HTTPi content, and
(3) theScript Proxy Engineprovides JavaScript and DOM interpo-
sition to enforce our mixed-content access control policies. In this
section, we describe how we implemented these modules and the
challenges we faced. Overall, our implementation consists of 1,100
lines of server-side code and 3,500 lines of client-side code.

6.1 Server-side Implementation
We completed two implementations of the server-side compo-

nent of HTTPi to explore two deployment tradeoffs. First, we ex-
tended the IIS 7 web server with a C# HTTPi Transformer mod-
ule that encapsulates the functionality to generate HTTP responses
with signatures and content hashes that adhere to HTTPi. Although
we chose IIS, similar module functionality is available for other
web servers. This option is useful if a server is willing to imme-
diately integrate HTTPi functionality into its current setup. It also
has obvious performance benefits as the module is closely coupled
with the server.

In our second deployment option, we integrated the HTTPi Trans-
former into a web proxy that translates typical HTTP responses
into HTTPi responses by embedding all the hashes and signatures
needed by HTTPi. We leveraged the public-domain Fiddler debug-
ging proxy [24] and its FiddlerCore [14] extensibility interfaces.
This option is independent of web server implementation and al-
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lows servers to continue supporting HTTP as the delivery protocol
for backward compatibility, while switching to HTTPi for select
requests that pass through the proxy. This eases deployment: the
proxy can be deployed anywhere in the network and guarantees in-
tegrity between the proxy and a compatible browser. This could be
desirable for corporations that do not require integrity checks for
intranet users, but want to ensure integrity of their sites for external
users.

For our evaluation, we used the proxy deployment, because (1) it
allowed us to test our prototype against publicly deployed web sites
without having control of their web servers, and (2) it allowed fair
comparison of HTTPi with HTTPS and HTTP (Section 7.2.3) by
cleanly switching to a desired protocol between the client and the
proxy even when the backend server did not support the protocol.

6.2 Client-side Implementation
6.2.1 Filtering content to enable HTTPi

The browser will issue HTTPi requests when it either (1) encoun-
ters a link (e.g., when processing an embedded resource) with an
httpi:// scheme, or (2) when the Strict Transport Security pol-
icy or Content Security policy require a request to use HTTPi (see
Sections 3.3 and 4). For (2), our HTML Content Filter modifies
every HTML response associated with STS or CSP to ensure that it
adheres to the minimum security levels specified in those policies.
For example, resource links requiring integrity are transformed to
httpi:// links by modifying the URL scheme. The HTML Con-
tent Filter is invoked before the browser renders a page, thus ensur-
ing that the HTTPi protocol handler will be called for all resources
requiring integrity during rendering. We implemented this module
by using IE’s public MIME filter COM interfaces [1] and register-
ing our own filter for HTML content.

One limitation of this approach is that it may miss dynamically-
generated links where the URL is constructed by JavaScript at run-
time. We are currently solving this by performing HTTPi redirec-
tion at the time of actual HTTP requests; our evaluation is inde-
pendent of this implementation enhancement and was performed
without it.

6.2.2 HTTPi Protocol
The HTTPi protocol handler encapsulates all client-side han-

dling of HTTPi content and is triggered when the browser’s render-
ing engine encounters an HTTPi link. Upon invocation, it makes
an independent HTTP call to the server to retrieve the content. It
then verifies the integrity of the content in segments using the al-
gorithms described in Section 2. Once the integrity of a particular
segment is verified, its content is released to the renderer for pro-
gressive loading.

We implemented this module as an asynchronous pluggable pro-
tocol (APP) [1] IE module associated with thehttpi:// scheme.
While IE provides this convenient protocol extension point, its us-
age carries a performance cost. IE’s internal logic is well-optimized
for HTTP and HTTPS but not for APP; this makes a comparably
performant APP protocol difficult to implement. Considerable time
was spent on making our code as optimal as possible by paralleliz-
ing various operations such as network read and signature verifica-
tion. Despite our limited knowledge of IE’s internal optimizations
and with the handicap of using a generic interface, we were still
able to achieve acceptable performance as compared to HTTPS and
HTTP (Section 7.2.3).

6.2.3 Access control for mixed content
Another big implementation challenge was to customize SOP to

enforce our mixed-content access control policies. Unfortunately,
IE does not allow changing the code for SOP with public APIs. As
a result, the only alternative was to implement our solution as an
additional layer on top of the existing SOP and then find a way to
enforce mixed-content policies within the limits imposed by exist-
ing SOP logic. This certainly complicated our implementation.

To solve this problem, we use two steps. First, we modify the se-
curity origin (defined as the tuple<protocol, domain, po-
rt>) of all web page objects to change the protocol field to HTTP,
i.e., the one with the lowest integrity and confidentiality level. We
achieve this by providing a custom implementation for theIInter-
netProtocolInfo interface [4] from within the APP for HTTPi.
Note that changing the security origin of an element does not affect



Protocol
Total Objects Publicly Cacheable Objects

Count Size Count Size
HTTP 346,629 1532 MB 251,826 (72.65%) 1385 MB (90.41%)
HTTPS 5,036 21.95 MB 3,659 (72.66%) 19.39 MB (88.33%)

Table 1: Measurement of publicly cacheable web content from the top 1000 Alexa sites.

the URL associated with that element. Per SOP, all the objects on
the page can now interact without restriction. Our second step is to
enforce access control rules that govern such interactions. We build
on earlier work [32,35] that implements a JavaScript engine proxy
(called Script Engine Proxy or SEP): SEP is installed between IE’s
rendering and script engines, and it mediates and customizes DOM
object interactions. SEP is implemented as a COM object and is in-
stalled into IE by modifying IE’s JavaScript engine ID in the Win-
dows registry. We extend SEP to trap all reads and writes across
the page’s objects and ensure that our mixed-content access control
polices (Section 5) are enforced. We use the URLs associated with
the accessing object and the object being accessed in making an
access control decision. In summary:

• If the original origins of the caller and callee objects differ in
domain and/orport, the browser prevents any interactions
across them as per SOP.

• If the original origins of the caller and callee objects differ
in only protocol, the SOP would allow the objects to in-
teract (as we modify the protocol field of the security origin
to HTTP). In this case, we mediate the interaction within our
customized SEP to enforce our access control policies.

The read operation is straightforward: SEP allows the caller to
have read access to the callee’s objects. The write operation could
be implemented similarly; however, some writes must first access
an object to which the write subsequently occurs. For example, if
the caller wants to write to a specific element on a callee object, it
might need to read the handle to that element using functions such
asgetElementById or getElementsByName. However, if
the caller only has write privileges with no read access, it cannot
make such calls.

We solve this problem by introducing a new JavaScript function
writeUsingCode, which is interpreted by our SEP implemen-
tation; the browser’s JavaScript engine does not need to understand
this function. Instead of directly making read calls looking for an
element of the callee object, the caller uses the function to pass
JavaScript code that encapsulates such read calls and the subse-
quent write call to the corresponding element. The SEP intercepts
writeUsingCode and makes calls to the underlying JavaScript
engine to execute the code with the origin of the callee object. Any
unintended feedback mechanism introduced by this code is pre-
vented by SEP’s access control policies.

7. EVALUATION
We have implemented a HTTPi system that works end-to-end.

We used our proxy-based implementation as a server-side HTTPi
endpoint to verify our system for correctness against a number of
popular web sites, such as Google, Bing Maps, and Wikipedia. In
each case, the browser successfully rendered the web pages and all
integrity checks were correctly included at the server side and ver-
ified at the browser. Any tampering of the web page in the network
was correctly detected and failed the integrity check at the browser.
We evaluated the access control interactions for mixed content by
developing a set of custom web pages that included such interac-
tions. Our system correctly enforced all access control policies for
these interactions.

Next, we provide experimental evidence to support our claim
that today’s web sites can benefit from cacheability enabled by

HTTPi. To this end, we first perform a web cacheability study to
answer two questions: (1) what web sites have cacheable content,
and (2) what users are taking advantage of shared caches on the
web. Next, we evaluate the performance of our HTTPi prototype
and compare its overhead to that of HTTPS and HTTP.

7.1 Study of Web Cacheability
With HTTPi, web sites decide what content uses HTTPi as the

underlying transport mechanism. Therefore, any content that web
sites currently allow to be cached by intermediate web servers,
such as CDNs and web caches, becomes an ideal target for HTTPi.
To better estimate the amount of such content, we performed a
cacheability analysis on the top 1,000 Alexa sites that includes
both top-level pages and content embedded on the sites visited.
We analyze the HTTP caching headers, such asCache-control,
Expires, or Pragma, to decide what content is deemed cache-
able [15].

Experimental Setup.To facilitate automatic analysis for a large
number of URLs, we used a customized crawler from earlier wo-
rk [32], which utilizes IE’s extensibility interfaces to completely
automate the browser’s navigation. To invoke functionality beyond
a site’s home page, the crawler uses simple heuristics that simulate
some user interaction, such as clicking links and submitting sim-
ple forms with junk data. We restrict all simulated navigations to
stay within the same origin as a site’s home page. We monitor the
browser’s network traffic in a proxy to intercept all HTTP/HTTPS
requests and analyze HTTP headers relevant to web caching. The
proxy is included as a trusted certificate authority at the browser to
allow it to inspect HTTPS content [24].

Prevalence of cacheable content.Table 1 shows the results of
our web cacheability experiment. Note that our results only con-
sider content that is marked as public and excludes any private con-
tent that is user-specific and hence is intended to be cached only at
the user’s browser. As we can observe from the table, a large ma-
jority (98%) of web objects are served over HTTP. We found that
approximately 73% of these objects are cacheable. The cacheabil-
ity is even higher (90%) when considering content size instead of
object count, indicating that web applications typically want larger-
sized content, such as images, to be cached in the network. The lim-
ited number of HTTPS objects that we encountered follow a simi-
lar trend, with a large number (73%) being cacheable objects. The
presence of a considerable number of public, cacheable HTTPS ob-
jects is an indication that web applications intend to cache objects
in the web, but are discouraged by the lack of security in HTTP.
They are left with no choice but to trust the CDNs for this type of
content. When only integrity of such content is desired, HTTPi is
an ideal alternative for these HTTPS objects.

Note that even though there is considerably less HTTPS con-
tent than HTTP in our study, cacheability benefits of HTTPi over
HTTPS would still be significant given that (1) we have measured
the most popular sites that many people visit (making benefits from
shared caching significant), and (2) this will take much load off
HTTPS servers (as 73% of the objects are cacheable). Moreover,
73% of objects served over HTTP could benefit from improved in-
tegrity under HTTPi (e.g., map tiles and scripts for Google maps).

Presence of in-network caches.To see how many users are
benefiting from web caches today, we measured the prevalence of
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Figure 5: End-to-end response time as a function of network band-
width available to the client, measured for a 836KB page. These results
do not include performance benefits of caching for HTTP and HTTPi.

forward caching proxy servers, which are a significant source of in-
network caching. More specifically, we conducted an experiment
to determine how the country and the user agent affects whether
a forward network proxy is being used. We used rich media web
ads as a delivery mechanism for our measurement code, using the
same ad network and technique previously demonstrated in [21].
We spent$80 to purchase 115,031 impressions spread across 194
countries. Our advertisement detected forward proxies using XML-
HttpRequest to bypass the browser cache and store content in the
network cache. Overall, 3% of web users who viewed our ad were
using a caching network proxy. However, some countries had a sig-
nificantly higher fraction of users behind network proxies. Popular
countries for forward proxies included Kuwait (63% of 372 impres-
sions), United Arab Emirates (61% of 624 impressions), Argentina
(11% of 1,875 impressions), and Saudi Arabia (10% of 4,248 im-
pressions). We also observed higher usage of forward proxy caches
(11%) among mobile users, although these users accounted for only
0.1% of the total impressions in our experiment.

Relevance to HTTPi.Our results demonstrate that caching prox-
ies are still prevalent and useful today, particularly for some large
communities, such as a whole country of people behind a single
firewall and mobile users behind cellular gateways. HTTPi can
take advantage of these proxies while offering end-to-end security
at the same time.

7.2 Performance Evaluation of HTTPi
We evaluate the performance of HTTPi in two steps. First, we

microbenchmark various stages of the protocol and analyze param-
eters that influence HTTPi’s performance. Second, we determine
the end-to-end performance overhead of HTTPi over HTTP and
HTTPS protocols.

7.2.1 Experimental Overview
Ideally, we would run performance experiments on real deployed

web sites. However, current web servers do not understand the
HTTPi protocol, and many servers host an HTTP version of a site
but not HTTPS. To overcome this, we used our modified server-side
Fiddler [24] proxy (Section 6.1) for proxying all requests from the
client to the backend server, and converting HTTP requests from
the origin server into HTTPi or HTTPS requests to the client, as
necessary for our experiments. This setup allows us to measure the
cost of using HTTPS and HTTPi for web pages that are currently
hosted over HTTP.

We use the end-to-end response time as the measurement cri-
terion, defined as time between the instance at which a URL is

submitted at the browser and the instance at which the correspond-
ing page is fully rendered. To remove any discrepancies that might
arise due to inconsistent network conditions, we deduct the data
fetching time at Fiddler from the total end-to-end response time.
This gives us an estimate of the end-to-end response time with Fid-
dler acting as the web server. For a fair comparison, we also per-
form similar deductions for HTTP and HTTPS.

For our experiments, we use SSL certificate size of 1024 bits.
Even though there is a push on the Internet to move towards 2048-
bit certificates, many popular sites such as Gmail still use 1024-bit
keys. Additionally, it makes HTTPi’s performance estimates con-
servative in comparison to HTTPS, as HTTPS will perform worse
for 2048-bit keys.

Using the Akma network delay simulator v0.9.129 [5], we sim-
ulated various network conditions to understand their performance
impact on end-to-end response time. We provided incoming and
outgoing connections with equal bandwidth and fixed their queue
sizes at 20 packets. We ran our delay simulator on the server side
to cap the server throughput to a desired bandwidth. We deploy
our server-side Fiddler code on a Windows 7 machine, with an In-
tel 2.67 GHz Core i7 CPU and 6 GB of RAM. The client runs on
a Windows 7 machine, with an Intel 2.4GHz quad-core CPU and
4GB of RAM. All results are averaged over 10 trial runs.

7.2.2 Microbenchmarks
To understand sources of overheads in our system, we instru-

mented our HTTPi implementation to measure latencies of various
operations, and used a simulated network bandwidth of 512Kbps to
load an 836KB HTML page in our HTTPi-enabled browser, with
the size picked to maximize measurable overhead and to observe
effects of HTTPi’s segmentation. Figure 4 breaks down the delays
contributing to the end-to-end response time, which we measured
to be 15.7 sec.

We find that a large fraction of the total time is spent reading
content from the network (bar 7 in Figure 4), which is an expected
behavior for slower networks. The overhead costs of hashing all
content segments (bar 2) and signing these hashes with a 1024-bit
key (bar 3) on the server side is very small. Here, the RSA sig-
nature is calculated on a fixed-size single SHA1 hash of 20 bytes
(Section 2); this takes just 3ms. Since the header value sizes are
much smaller compared to the content body, both the time to set
the header integrity content (hashing and signing) on the server
(bar 1) and time to verify it on the client side (bar 4) is low.3 On

3Note that we do not perform any segmentation for headers.



the client side, the signature verification time (215 ms, bar 6) is a
more significant source of overhead. It is considerably higher than
the cumulative hash verification time for all content segments (51
ms, bar 5), supporting our design of using a single signature over
multiple segment hashes. The time to pass data from our client-side
HTTPi protocol handler into the browser’s rendering engine (bar 8)
is also considerable; although it is not specific to HTTPi and would
also be incurred by other protocol handlers in the browser, native
protocols like HTTP are more optimized in IE for this step, as we
discussed in Section 6.2.2.

In summary, we find that the major HTTPi components (bars 1-
6) constitute only 295 ms (1.8%) of the end-to-end response time
for this microbenchmark, with largest overhead coming from client-
side signature verification.

7.2.3 Comparing HTTPi to HTTP and HTTPS
In this section, we compare performance of HTTPi to that of

HTTP and HTTPS and answer two questions: (1) Is the user-per-
ceived latency acceptable for the data received over HTTPi, and
(2) What is the performance impact of running HTTPi and the hash-
ing and signing load it incurs on a web server?

User-perceived latency.We compared the end-to-end response
time for our 836KB test page rendered over HTTPi, HTTPS and
HTTP. Figure 5 shows the results of our experiments performed
for different network bandwidths. Note that the performance re-
sults do not include caching, and only show the first of potentially
many requests for this page. Evaluating performance of a particular
cache is not the goal of our experiments; this has been well studied
previously [37]. We see that HTTPi incurs minimal overhead over
both HTTP and HTTPS, and this overhead is consistently within
0.7-2.0 seconds over both HTTP and HTTPS for different network
bandwidths. Since this value does not vary much with network
bandwidth, we believe our implementation is fairly successful in
matching the network optimizations of HTTPS and HTTP. We be-
lieve that there is still ample room for client-side optimization as
we discussed earlier in Section 6, and this will certainly reduce the
total overhead of HTTPi (since our microbenchmarks showed that
client-side overhead is small but not negligible).

Web Server Throughput. Our server throughput measurements
are performed using httperf [25], an HTTP performance measure-
ment tool. The experiments are performed using two different se-
tups representative of real-world web site deployments:

• Our first setup consists of an IIS server that is hosted on a
bare-metal Windows 7 machine, with Intel 2.67 GHz Core i7
CPU and 6 GB of RAM. The Linux client machine running
httperf is connected to the server by a 1Gbps network with
negligible latency.

• Our second setup is cloud-based; we use a virtual Windows
2008 Server image on Amazon EC2. At the time, this image
was the only publicly available image that came pre-installed
with IIS 7. It is a “high-CPU medium” instance with 5 EC2
compute units with 1.7 GB of RAM (the fastest instance that
was available for this image). This setup mimics a typical
EC2 user who wants to host a web server. httperf is executed
from a Linux EC2 instance in the same region, using EC2-
private LAN with negligible latency.

We use an experimental HTML page of size 4.8 KB, which rep-
resents a typical size of a page with no embedded links. We ar-
rived at this page size based on the web estimates that put total
page size at 170KB (median) and number of objects per page at
37 (median) [26]. For each page, we increased the offered load on

For our measurements, we specify two headers,Server and
Content-Type, to require integrity. This time cost will vary
with the number of headers for which integrity checksum is set.

Experiment HTTP HTTPS HTTPi
Bare-metal Setup 3320 2503 3318

Amazon EC2 Setup 2757 678 2732

Table 2: Impact of HTTPS and HTTPi on server throughput in re-
sponses/sec.

the server until the number of sustained sessions peaked. We found
that the server was CPU-bound in all cases. Each session simulated
one request to the web page.

Table 2 shows a summary of our results. HTTPi incurs negligible
degradation (less than 1%) of throughput compared to the original
HTTP page. In comparison, the throughput drop was substantial
when using HTTPS, with our bare-metal experiment reporting 25%
and EC2 experiment showing 75% drop in the throughput. This
drop is attributed to the heavy CPU load for the SSL handshake.
Our bare-metal experiment shows a smaller drop since it has a con-
siderably faster CPU, which handles this load better. Overall, these
results demonstrate that web servers can have a significant perfor-
mance incentive to use HTTPi instead of HTTPS.

8. RELATED WORK
Prior work has explored a number of integrity protection tech-

niques. A proposal on authentication-only ciphersuites for PSK-
TLS [12] describes a transport layer security scheme for authentica-
tion and integrity, with no confidentiality guarantees. However, this
proposal requires a shared secret between each client and the server
to key the hash, making it impractical to share the key with all the
clients of the application. Our work builds on SHTTP [29]’s pro-
posed signature mode of operation and gives it a practical design for
today’s web by addressing the previously-unidentified challenges
of progressive content loading, mixed content handling, and access
control across HTTP/HTTPi/HTTPS.

Web tripwires [27] verify the integrity of a page by matching it
against a known good representation (either a checksum or an en-
coded copy of the page’s HTML), using client-side JavaScript to
detect in-flight modifications. However, web tripwires have a high
network overhead (approximately 17% of the page size), which
could hinder the end-to-end response time, especially for slower
networks. Moreover, web tripwires can be disabled by an adver-
sary, and they cannot detect full-page substitutions. In contrast,
HTTPi has a much lower overhead, and it is cryptographically se-
cure and can prevent any type of integrity breaches. Fundamentally,
web tripwires focus ondetection, while HTTPi focuses on bothde-
tectionandprevention.

Other research has proposed cryptographic schemes for web con-
tent integrity [8, 17, 18]. While we share some commonality with
these efforts in integrity computation, our system differs in three
significant ways. First, our design is more robust against attacks
like stripping and content replay. Second, we design HTTPi to
be practical for today’s web and address problems such as mixed
content treatment, compatibility with “chunked” transfer encoding,
and access control across HTTP/HTTPi/HTTPS content, none of
which are considered in prior work. Third, we go beyond algorith-
mic design and also offer a full practical implementation and eval-
uation of HTTPi for a real-world browser, while earlier research
lacks any implementation details.

Stubblefield et al. [34] proposed mechanisms to improve SSL’s
performance. While their WISPr system shares HTTPi’s motiva-
tion of supporting in-network caching while preserving integrity,
it is designed for another content delivery protocol (subscription-
based), rather than for use in existing web sites. WISPr constructs
an HTTP page that embeds the encrypted version of the original
page; this page can be cached in the network. However, a client



needs to download a key from the server in order to decrypt the con-
tent, and WISPr only works for static content. In contrast, HTTPi
is readily compatible with existing web sites, it supports staticand
dynamic content, and it adds support for progressive loading and
mixed-content scenarios common on the web. Whereas no eval-
uation details are provided for WISPr, we showed that HTTPi is
practical in Section 7.

HTTP provides a Content-MD5 header [15] that can carry the
MD5 signature of the complete page. This header could be useful
in providing basic page integrity, but suffers from many weaknesses
if used by itself. For example, network attackers can modify the
header since it is not authenticated, or they could completely drop
the header without the client knowing. In contrast, HTTPi pro-
vides authentication by signing content hashes, and since it speci-
fies the requirements for a page using HSTS in advance, the client
can detect whether content requiring integrity is dropped by net-
work attackers. Additionally, with HTTPi, integrity is evaluated
over smaller-sized segments, which has better performance than
Content-MD5’s entire-page approach.

9. CONCLUSIONS
We envision HTTPi to complement HTTPS to bring end-to-end

security to the entire web. Only when there is end-to-end security,
the browser platform and the web are able to have a collectively
secure overall system.

We advocate the part of the web that does not have end-to-end
security today to adopt HTTPi which incurs negligible performance
overhead over HTTP and enjoys the benefit of CDNs and caching
proxies just as HTTP. Our study indicates that a significant portion
of existing HTTPS content is cacheable and can gain performance
and caching benefits by employing HTTPi.
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