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ABSTRACT

The broadcast and tetherless nature of wireless networkshan
widespread deployment of Wi-Fi hotspots makes it easy toteiy
locate a user by observing her wireless signals. Locatipnivate
information and can be used by malicious individuals forckia
mail, stalking, and other privacy violations. In this papee an-
alyze the problem of location privacy in wireless networkel a
present a protocol for improving location privacy. Our lcaap-
proach is to obfuscate several types of privacy-compromisifor-
mation revealed by a mobile node, including sender idertitye
of transmission, and signal strength. Our design is driverehl-
system implementation and field experiments along withyaisl
and simulations. Our system allows users to choose the tdvel
privacy they desire, thereby increasing the performandessfpri-
vate users (while not sacrificing private users’ privacyhat $ame
time). We evaluated our system based on real-life mobilétad
and wireless LAN coverage. Our results show that a user of our
system can be indistinguishable from a thousand users isetine
coverage area.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous

General Terms
Measurement, Design, Experimentation, Security

Keywords
Privacy, Localization, 802.11

1. INTRODUCTION

In recent years, we have witnessed the pervasive deployment
of Wi-Fi hotspots (e.g. [1, 5, 27]) which has empowered peopl
to communicate and compute almost anywhere and anytime. The
wireless medium and its broadcast nature also makes it nasiére
to compromise a user’s privacy: an attacker that sniffs gescgent
over the air can easily determine a user’s communicatioteat
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the contents of her communications (if unencrypted), ondgen-
fer a user’s physical location, which can be a threat to hgsighl
security. For the latter problem of location determinatiorevious
research [2, 23] has shown that precise positioning of aleabide
is possible: in Ladd et al.'s scheme [23], the received digfnength
of the mobile node at different access points can map the twde
within 1 meter range with at most 50% error. In wireless neksp
traffic analysis and confidentiality can be protected thiotrgdi-
tional approaches, such as encryption and traffic mixing2;
however, solutions for protecting a user's physical lamatinfor-
mation are scarce and lacking. In this paper, we treat thielgmmo
of location privacy.

Our basic approach to location privacy is to obfuscate pyiva
compromising information that is leaked in the course ofeleiss
communications. This leakage occurs through five sourdese, t
location, sender node identity (such as MAC address), vecei
node identity, and content. While content can be protecyeenb
cryption and receiver identity can be protected by goingugh
a MIX-net [6] or Crowd [25], the broadcast nature of the wass
media inevitably exposes the first three dimensions whichbea
used to infer the user location. We obfuscate these threerdim
sions as follows:

e Anonymize the user or node identity with frequently chang-
ing pseudonyms. While the analog characteristic of a wire-
less card may be fingerprinted and serves as a form of iden-
tity, the feasibility of RF fingerprinting of noisy wirelesgt-
ting has yet to be proven. Furthermore, RF fingerprinting
requires costly hardware [13], so using RF fingerprinting fo
user tracking would require wide deployment at a high cost
to attackers.

Unlink different pseudonyms of the same user with silent pe-
riods between different pseudonyms.

Increase the entropy of the attackers’ location estimatipn
reducing the precision of location algorithms; mobile rode
in our system reduce their transmission range through power
control to reduce the number of nodes that can collaborate to
determine the nodes’ location.

While some aspects of these ideas have appeared in resi¢arch |
erature [16, 4, 20, 21], in our work, we aim to evaluate andtjfya
the efficacy of these mechanisms along with their propenmperar
configurations for real wireless systems by using a comisinatf
real-system experimentation, simulation, and analysis.

In this paper, we analyze the achieved location privacy oba m
bile node using the metric gdrivacy entropy To obfuscate the
transmission time, we introduce tlopportunisticsilent period,

which takes place during the idle time between users’ conicatn

tion sessions. We further developed a methodology for oheyithe



duration of the silent period to satisfy certain privacyuiegments,
given the mobility pattern within a service area. We conddct
case study evaluating the impact of silent period on privaging
the mobility pattern of Seattle buses. We find that takingape
timal silent period, the system offers 8 bits of entropy fdwacy
protection; that is, after one silent period, the user issiinguish-
able from2® other users in the service area of the wireless network.
To reduce the precision of location estimation, we devissifieat
transmit power control algorithm based on our field measergm
from both indoor and outdoor environments. We find that tkeeipr
sion of localization schemes can be reduced by a factdg affter
applying our transmit power algorithm, which is equivalémin-
creasing privacy entropy by 3.7 bits. In addition, we preposer-
friendly operationsn privacy protected systems that incur minimal
disruptions to user communications. This allows the systém
increase entropy for privacy-sensitive communicatiorthouit re-
ducing the performance of privacy-insensitive commumicest. To
verify the practicality of our approach, we implemented piivacy
protection mechanisms for a Netgear WG111U USB wireless car
by extending its driver.

It may seem that location privacy is inherently at conflicthwi

wireless service provisioning and popular location-bassdices.
Indeed, some wireless service billing and authorizatitrestes re-
quire the identity of a user or her mobile station, and laratiased
services must first infer the user location before providiagrices
based on user location. However, we argue that any suchalimit
tions are particular to thiemplementatiorof these services. A user
need not reveal her identity to receive wireless servideptone
networks already have cash-purchased calling cards folyamous
authorization. Wireless service provision can take theesapr
proach of separating billing from service provision anadwalhg
billing to be anonymous, as in [20]. For location-based ises;
a mobile station can calculate its own current location, anly
give this information to location-based services trustgthle user.
Therefore, it is feasible to give users the choice of priviaoyire-
less networks and location-based services.

The rest of the paper is organized as follows. We first review
existing RF-based localization systems and previous isolsitfor
protecting location privacy in Section 2 . We define the &iac
model in Section 3. Section 4 gives the definition of privany e
tropy. In Section 5, we present our detailed design for achie
ing location privacy including frequently changing pseogms,
silent period and reducing location precision; our desigs driven
by real system experimentation, field measurement and atronl
analyses. In Section 6, we describe how our location privacy
enabled mobile nodes and service providers operate. ¥imed
conclude our paper and discuss remaining challenges imgéatt

2. RELATED WORK

2.1 Location technologies

Various approaches have been proposed to estimate thitocat
of mobile users in wireless networks. In this paper we onhsider
RF-based localization systems, because RF-based |dtatizys-
tems do not require extra infrastructure and specializedvere
and technologies that are severely limited. For instaramgliza-
tion systems based on time of arrival (TOA) require multghéen-
nas and a very fine-grained timer. Furthermore, TOA techasqu
are of limited usefulness in urban environments due to athi
interference, whereas RF-based localization is effeativmth in-
door and outdoor scenarios.

Existing RF-based localization systems (such as [2, 23ard)
able to accurately locate users using already deployedspoénts

(APs) in WLANSs, under the condition that three or more APs are
in the communication range of users. Bahl and Padmanabhan [2
and Ladd et al. [23]'s experiments in normal office buildirgs
termine location on the order of meters. For instance, Ladd e
al. [23] achieve accuracy of better than 1 meter over 50% @f th
time. Cheng et al. [7] studied metropolitan-scale Wi-Fidtaon
determination using available 802.11 APs in cities. Thgpegi-
mental results show median accuracy of 15-30m in large outdo
areas. These systems work in two phases: a training phasa and
positioning phase. The training phase uses a procedurésimi
“war-driving” to obtain a large amount of signal data. Theirting
data is then used to build a “radio map”. In the positioningg#

the signal data of the target is recorded by all APs that canthe
target’s transmissions. This data is then compared to thie raap

to estimate the target’s location.

2.2 Application-Level Location Privacy

The location privacy problem is of great interest in locatio
based services because location data needs to be reveagd to
ternal services. To retain location privacy, users can lisig bwn
sensors to calculate their own location (e.g. Cricket [1&§uch
systems preserve location privacy when users do not emitany
tectable signals. However, in the course of transmittiregrtto-
cation or receiving the location-based service, mobileesodill
transmit wireless network packets, and these systems dpraet
tect against privacy compromise inherent in such transamiss

Gruteser and Grunwald [15] discuss schemes in which theaspat
and temporal accuracy of location information is reducezhghat
at leastk users are indistinguishable. The IETG&oprivworking
group [12] has been chartered to design protocols and ARLs th
consider the privacy and security issues inherent in thestea of
high resolution location information to external servigex the
storage of such information at location servers. This pdffars
from the work of Gruteser and Grunwald [15] and Geopriv [12]
in that they target location information provided by apations,
whereas we examine the privacy of location information tzat
be inferred from the wireless transmissions of networksiser

2.3 Network-Level Location Privacy

Solutions for location privacy risks have been proposeddwy s
eral research groups (e.g. [16, 4, 20, 21, 19]). All of thedet®ns
propose the use of frequently changing user pseudonyms.t He e
al. [19] concentrates on the use of blind signatures to peotor
the anonymous authentication of new pseudonyms. Anonymous
authentication is only a small part in protecting locatiaivacy.
Other issues we address in this paper include obfuscatimdese
identity, time of transmission and signal strength.

Gruteser and Grunwald [16] examines the effect of pseudonym
changes on locating users based on a wireless trace thatiront
the AP association of users. They do not, however, consider a
tacks correlating different pseudonyms of the same usexdoas
mobility pattern of users. For example, if at tirhg we know that
a user moves along a direction at speednd later on at timewe
see a packet along the same direction of distari¢e- to), then
we know most likely this packet is from the same user. To reduc
this risk, Hu and Wang [20] and Huang et al. [21] introdsdent
periods where privacy-sensitive users intentionally do not trans
mit, in order to reduce the effectiveness of such corrafatidOur
work, building on top of [20] and [21], uses apportunisticsilent
period. We further provide a methodology for calculating tpti-
mal silent period given a mobility pattern. We give an exasngf
such a calculation based on a case study using actual mdtulih
the Seattle-area bus system. Our previous work [20] brought



the previously ignored problem of location privacy and peéhout

future directions for preserving location privacy. In thisrk, we

extend those solutions and present the protocols in déaither-

more, we design an operational model for location privaeserv-
ing systems, and introduce the privacy entropy metric tosuesa
the degree of privacy our system provides.

Mix zones [4] reduce the correlation between two pseudonyms
of the same user. Users are not allowed to transmit in the anig;z
these mix zones are essentially spatial versions of thetgiriod.
However, the mix zone scheme requires each node to knowats ex
location. Furthermore, the constrained communicatiors avill
reduce participation by privacy-insensitive nodes.

Reducing the precision of a location estimation schemeaszs
the uncertainty in determining a device’s location sinceynather
devices are also in the same course-grained location. a@oet
al. [14] suggests that users can hinder RF-based localiztach-
niques by distributing their data on pseudo-randomly cha$an-
nel. An attacker would then be less able to distinguish, &g t
localize, signals transmitted in this way. However, thiliton as-
sumes that the access point operator is trusted, whereasf one
objectives in this paper is to protect a user’s locationgmyeven
when the access points cannot be trusted (e.g., commumidags
on the APs are compromised). Rather than using channelsgpp
to decorrelate device transmissions, we reduce transmigsiwer
to decrease the number of APs in range, so that the localizati
algorithms in [2] cannot succeed.

24 RF Fingerprinting

As we discussed in the previous subsection, anonymity iga pr
requisite of location privacy, without which first-hop asseoints
could easily pinpoint the location of the identified usemagsio-
calization algorithms mentioned above. RF fingerprintibg, [13]
could potentially be used to identify a wireless card by wrial
imperfections in the analog components to determine whethe
not two packets were sent from the same transmitter. For gbegam
imperfections in the oscillator will cause the carrier fneqcy to
deviate from the specified frequency by an amount uniquedb ea
transmitter.

Nevertheless, the literature has yet to establish thelfitisiof
RF fingerprinting. While Gerdes et al. [13] have demonsttaitat
itis possible to fingerprint an Ethernet device, the noigbénwire-
less networks would pose significant challenges and theactear
istics of fingerprints are likely to change due to multipatos
agation, fading, temperature variation, battery condijtiboppler
shift and device aging. Because of the high variabilityadtrced
by wireless environments, and the similarity of RF fingerwibe-
tween wireless cards of the same model, the cost of buildirigRa
fingerprinting-enabled network is very high. First, clgadlistin-
guishing between cards having similar fingerprints requardigh
speed and high resolution ADC (Analog-to-Digital Converie
the receivers, which is expensive. In fact, Gerdes et al. i$8d
an oscilloscope to sample received signals. Secondlyyairtg
phase to build RF fingerprinting profiles requires a long tijoe
the order of a couple of hours), and such protocols must be
dated frequently. This cannot be easily done in mobile aivégy
sensitive environments.

Our privacy schemes raise the bar significantly for attacler
calizing mobile users. Attackers must resort to RF fingetprg
which requires additional hardware and expensive deplayrog
such hardware equipment.

Furthermore, although itis not possible to duplicate aifijgdRF
fingerprint, it is possible for privacy-sensitive deviceshide their
RF fingerprints intentionally. For instance, most RF fingiertp

up-

ing identification schemes analyze the transient signaistnitted
when devices are being turned on. By intentionally addingnst

noise during the transient period, such transient sigrzalde made
difficult to distinguish. Further research on such conceptf RF

signals for privacy is an important piece of future work.

3. ATTACKER MODEL

In wireless networks, the problems of confidentiality, a&umth
ticity, authentication and accessibility are also very amant and
challenging. However, they are beyond the scope of thismpaye
assume that certain mechanisms have been applied to ptoteet
aspects of security.

The attackers of our interest are those that aim to expose the
location information of mobile users in wireless networRere
aresilentattackers anéxposedttackers.

Silent attackers are sniffers that do not emit any signals, b
only listen and localize mobile users. Silent attackersstn@ngest
when they are densely scattered throughout wireless seavéas,
in which case they are capable of precisely locating a malsiés.
Such an attacker would need to have substantial resounresx-f
ample, it could be a government or a competing service peovid

In contrast, exposed attackers are network providers thigt m
provide wireless services in addition to obtaining a mobide lo-
cation. Although network providers themselves could bsttror-
thy, a provider may accidentally leak privacy-sensitiieimation;
such leakage is now rampant for other types of private inéion,
and can be due to malicious employees, hackers, theft, brofac
sufficient review and oversight.

Among exposed attackers, we further distingustiveattackers
andpassiveattackers. Active attackers refer to network providers
that dynamically adjust their base stations’ transmisgiower to
react to the network load or to more precisely locate a usas- P
sive attackers are network providers that do not changedtasen
behavior.

4. PRIVACY ENTROPY

The concept oéntropywas first introduced in Information The-
ory [26] to quantify the uncertainty one has before an expenit.
The higher the privacy entropy value is, the more uncerttack-
ers will be of their user location inference, and hence thiebe
privacy protection our system offers. Given an attackerthedset
of all mobile useré/, let X be the observation of the attacker about
the user at some locatiah Given observation, the attacker com-
putes a probability distributio® over users: € U. We define the
privacy entropyof this observation\ to be

Hy == Puxlog,(Pu).

ueU

@)

We could interpret the privacy entropy as the number of Hits o
additional information that the attacker needs to defiaitiiden-
tify the useru observed with\ at the location’. Obviously, if one
user is assigned a probability @f then the attacker already has
enough information to identify the user. To determine thegay
entropy, we need to determine the probability distributaicu-
lated by the attacker. In Section 5, we show how this might be
calculated in a realistic mobile system.

5. ACHIEVING LOCATION PRIVACY

In this section, we present our location privacy solutiansié-
tail. Our approach obfuscates three sources of locatioragyi
leakage: sender identity (Subsection 5.1), time of trassioin (Sub-
section 5.2), and signal strength (Subsection 5.3). Inrdodgosely



relate our design to real systems, we focus our descriptiamo-
tocol built around an 802.11 WLAN, but our techniques caregen
alize to other types of wireless networks, such as cellidararks.

5.1 Pseudonym

Anonymity is a prerequisite for location privacy; withoutanymity,
an attacker can easily link a user to different locationsprvent
an attacker from using user identity for tracking, userstrags fre-
quently changing pseudonyms for communications. In an1802.
WLAN, MAC and IP addresses are user identities that must e pr
tected by using pseudonyms. However, changing pseudomgns ¢
ates several design problems.

One important factor in choosing pseudonyms is to avoid ad-
dress collisions with other network nodes. Because theremly
48 bits in a MAC address, randomly chosen addresses havéa hig
probability of collision in networks as small 2&* due to the birth-
day paradox. In our design, MAC addresses are assigned bgsacc
points. When a user comes within transmission range of agsacc
point and wants to connect to it, the user first sends out aagess

request a MAC address. This request must be sent from a MAC ad-

dress, but using the interface’s unique MAC address wouldale
user identity, and using a randomly chosen MAC address may co
flict with an established user. In our system, the user useslla w
known address called thein addressto avoid such conflicts, and
distinguish between multiple simultaneous requests tiirdie use

of a 128-bit nonce.

addresses this problem through the use of trusted anonymdus
letin boards, together with cryptographic mechanisms tueut
user identity.

When pseudonyms change between two associations, thieaattac
cannot trivially identify a user at a particular locationitiéut any
additional information, the privacy entrogy is equal tdog, (IV),
where N is the total number of users in the network. However,
when an attacker accumulates the location informationlfpeak-
ets sent in the network, the attacker can attempt to coereliéer-
ent pseudonyms with the same user. For example, if a user was
moving along a road at some speed, then a packet further along
the same road is more likely sent by that user. In order tocedu
such correlations, we usesdent periodto unlink communications
under different pseudonyms of the same user.

5.2 Opportunistic Silent Period

During a silent period, a user does not send any wireless-tran
missions. A silent period allows a sender to “mix” in with eth
possible nodes (through natural node mobility). The effeaess
of silent periods depends heavily on user density: when $ee u
density is low, such as when a user is at home, an attackerasan e
ily identify and locate the user even if the user frequentigrges
her mobile node’s pseudonym and uses a long silent perioeteth
fore, location privacy systems are most effective at puplaces
with high user density, such as coffee shops and airports.

Forced silent periods can disrupt communications; for gptam

When the AP receives a MAC address assignment request fromTCP sessions will be broken, and real-time communicatianset

the join address, it chooses an unused address from its MAC ad

continue. To minimize disruptions, we introduce the conasp

dress pool and sends a reply that includes both the nonce froman opportunisticsilent period, which takes place during the idle

the request packet and the assigned MAC address. If the-under time between users’ communications.

lying physical layer requires acknowledgment for unicastkets

(as does 802.11), this reply packet is sent as a link-laysadmast
packet to avoid an acknowledgement implosion. When a node re
ceives such areply packet, it checks to see if the noncesponels

to a request that it has sent, and if so, it begins to use the KAC
dress assigned by the reply packet. The process of assiytfiiay
addresses is depicted in Figure 1.

1. request: src->{join_addr | nonce} 2. request addr Local MAC

address

pool

4. response: dest->{join_addr | nonce}, 3. unused addr

unused addr

Figurel: MAC address selection

Another network-layer identifier is the IP address. IP asiskes
could be assigned through Statistically Unique Cryptokicadly
Verifiable IPv6 addresses [24]. Alternatively, since basdians
already provide unique MAC addresses, they can also asBign |
addresses from a pool as part of this protocol. Unlike nétwor

In an opportunistensi
period, the user’'s machine detects that it has not transanitr a
period in excess of the silent period, and uses that time angdn
pseudonyms. This decision can result in a changed pseudonym
either as soon as sufficient time has elapsed, or when theeser
wishes to transmit. Opportunistic silent periods mitigaeimpact

of silent periods on user communications.

We analyzed the WLAN trace data at Dartmouth College from
CRAWDAD [9]: 50% of the sessions have a duration of 4 minutes
or less (Figure 2); more than 50% of inter-session timesargdr
than 10 minutes, as shown in Figure 3. This data shows thatrepp
tunistic silent periods are quite suitable for WLANSs.

5.2.1 Methodology for Choosing a Silent Period

This section describes the methodology for determiningdeatsi
period that achieves certain privacy requirements. As ineed
earlier, the efficacy of silent period depends on user deriEltere-
fore, we take the mobility pattern within a service area gmiin
to our derivation. Mobility pattern data consists of tripletime,
pseudonym, location. Such data can be easily collected and pro-
vided by third parties, and correctness can be verified bgsero
checking data from multiple providers.

layer identifiers such as MAC and IP addresses, we do not need We compute the privacy entropy as follows. In the trainingseh

to extract and obfuscate application layer user ident#tiesh as e-
mail usernames because such identities are transmittearsport
layer payload content which can be protected through etioryp

we derive the probability distribution given a fixed obseima lo-
cationL,,. Given the mobility pattern of the service area (the train-
ing set), we find all the users which paSs,; and denote the set

Changing the MAC and IP addresses may cause disruptions wherof such users a&’. For each time; that a user is observed at

the user associates with a new AP. Our system only allows ad-

dress changes just before the start of a new associationdd@he
tailed operating mode of mobile users is discussed in SecT6.
minimize the disruption of communications, users do noingea
their addresses during inter-AP handoff as long as theyastag-
ciated. Another problem with IP address changes is thatcesur
cannot easily communicate with such a node. Previous wdik [2

Lo», We trace the training data backwards to tipe= t1 — At
(for a fixed At), and record the locatiof; where uset is atto.

By tracing backwards all users that pass the observatiaatitot
we obtain a set ofK(| locationsLOC(At) = {L;|i € K}, where
some elements in the set may be identical. Given a speciféc loc
tion £; from LOC(At), we defines; to be the number of elements
in LOC(At) which is the same a§;. «; represents the number
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Figure 2: CDF of session duration from Dartmouth campus-
wideWLAN trace

of users in the training set that travel frofh to L, in time At.
Therefore if the time interval is fixed a&t¢ and a user is observed
at L, at timet;, the conditional probability that this user was at
L; attg is

Ki
This conditional probability represents how likely a usexsvinZ;
At time ago, given it is observed 4.

In the test phase, we ugg(At) to compute the privacy entropy.
Suppose the silent period is in the rangd®Bf*", T™*], When-
ever a new pseudonym is observeddp, at timet, we define
M as the set of theandidatepseudonyms from time — 77
to t — 7™ that might be linked to this new pseudonym. Sup-
poses is one of the candidate pseudonyms, which i€jrat time
t—At;, At; € [T™™, T™%]. Then the probability thaiis linked
to the new pseudonym among these candidates is

X 1 C ) N
i, (L, Lob) EmEIVIp’m(At’m)y

)

©)

where P; (£, ) is the probability distribution used for privacy
entropy. Therefore we could calculate the privacy entrdisy aser
in location £, according to Equation (1). In addition to location
information (L;, Lo), the observation\ in Equation (1) can in-
clude additional information such as speed and directionafe-
ment, which improves the accuracy of the location inferehté¢he
following case study on bus data, we consider location atatitg
information.

The above calculation considers the worst-case scenagoewh
the attacker has the complete mobility pattern data. Wherath
tacker does not have complete data, such as when mobiligrpat
data is collected from a privacy-enabled service area, clerae
achieves even higher privacy levels.

Our goal is to choose a silent period that maximizes the gyiva
entropy. Previous work shows that silent periods must beaam
ized [20]; otherwise, if an attacker sees two pseudonymd age
actlyt seconds apart (whetés the silent period) then he will know
that those two pseudonyms belong to the same user with hadh pr
ability. We use a random silent period ®f;, + 7', whereT}, is
deterministic and’’. is drawn from a uniform distribution between

0.8

0.7k Median=10 mins

CDF

0.1
0

. .
10 20 30 0 50 60
Duration Between Sessions (minutes)

Figure 3: CDF of Duration between Sessions from Dartmouth
campus-wide WL AN trace

0 and 77", ThusT™"™ = T, andT™*" = Ty + T;"**. The
derived silent period is an upper bound of the best possiilaqy.

5.2.2 Case Study on Bus Mobility Data

In this section, we give a case study on how to derive silent pe
riod using the above methodology. Here, we use the mobititg d
of Seattle bus system from the BusView system [10]. We chose
the bus data because it consists of both a realistic molpiitiern
and accurate location information. To obtain such data irAN&
requires a large number of users and for each user to be eglipp
with a GPS system. Due to our limited resources, we used the bu
data as an alternative. Though the results are definitelgrdift
from those in WLANS, we will show that they provide very valu-
able insights on choosing the optimal silent period.

We divided the bus data into a 5-day training set and an 8-hour
test set. We quantized the time in our data to 30 second aiterv
and the area into square sections 300 feet on each side. Bpeed
quantized into bins aligned on 5mph boundaries and movement
direction into 8 equally-sized slices. We chose an arhitaea
section as the observation are@,{). When a bus enters the ob-
servation ared,, at timet, we consider it to have started using
a new pseudonym. If the length of the silent period is unifgrm
distributed on[Ty, Ty + T,7**], then the candidate buses which
can be linked to the new pseudonym must have last been used in
the time intervallt — Ty — T,7“",t — T4]. GivenP; s, » .y Of
each of these candidatéswe calculate the privacy entropy of the
new pseudonym. Because the buses are not users of a wiratass d
network, we do not have actual communication patterns ensil
period selections, so for the purposes of this experimeatfinst
chose a communication schedule for each bus, basef; and
T, and a communication time for each session chosen from a uni-
form distribution with a mean of0 minutes. Therefore, only buses
which stop one of their communication sessions during ttezval
[t — Ty —T7"*", t — Ty] can be considered as candidate nodes.

Figure 4 shows the relationship between privacy entropythed
length of the silent period. The x-axis is the determinisilent
periodT,; and each curve shows a fixed range for the random silent
periodT:.. Figure 4 shows that the privacy entropy reaches a max-
imum whenTy is around 20 minutes, independent®f. In par-
ticular, whenT;. is 4 minutes, the system achieves its maximum
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Figure 4: Privacy Entropy vs. Deterministic Silent Period

entropyH = 5.38 with a Ty of 19 minutes 20 seconds. When
T4 is small, increasind’, increases the entropy. However, this
trend does not continue with increasifly. Increasing the silent
period increases the fraction of buses that are in a siletageso
fewer buses transit from communicating to silence in a paldr
time interval. Therefore entropy decreases after it remcheax-
imum point. We also observe that entropy is periodic, rathan
monotonically increasing or decreasing. This is becausagies
bus is generally scheduled to periodically service a roatette
entire day. The figure also shows that privacy entropy is rrano
ically increasing with increasin@... This is because by increasing
the random silent period, the length of the silent perioerival
increases, so it includes more candidate buses.

To determine an optimal value far., we fixed the value of the
deterministic part of the silent peridfl; to the optimal value of
19 minutes 20 seconds. We then plot the entropy agdifist’ in
Figure 5. The figure shows that befdfg*“* reaches 12 minutes,

T;"alez mins
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Figure5: Privacy Entropy vs. Random Silent Period

the privacy entropy increases quickly, but after it crodesinutes,
the rate of increase drops sharply. To minimize the silenbgde

while retaining good location privacy, we choosg'** close to
but not greater than 12 minutes. We also plot the entropynagai
T, whenT; = 0 in Figure 5. The maximum entropy is only
around 3.5 because wiffi; = 0, because the target user may se-
lect silent period very close to 0. In this case, there arg fer
candidates, so the entropy is very low. Therefore, the systest
set a lower bound’y; > 0 for the silent period.

5.2.3 Summary

In this subsection, we provided a methodology for calcogati
the optimal silent period. This optimal value gives an ugpauind
on the necessary silent period; that is, the system canihig\ec
better privacy even when using a longer silent period. lhsgs:
tems, the selection of silent period depends on the tradesff
tween service quality and privacy. A system requiring higtaigey
chooses the optimal silent period and sacrifices its semyizs-
ity by introducing long communication disruptions, whilgystem
requiring high communication quality may choose a shoiitens
period.

5.3 Location Precision

By reducing the location precision of a localization scheme
can offer better privacy to mobile users since the presehntieeo
mobile user is blended in with more users in the larger arahl &t
al. [3] have shown that the precision to which we can locatea m
bile user is related to the number of APs within that userfaicw-
nication range. Their experiments showed that there idfgignt
improvement from 1 AP to 2 APs and from 2 APs to 3 APs, but
the improvement is small when using more than 3 APs. To reduce
location precision, we use transmit power control to mizigiihe
number of APs in range while ensuring at least one AP for con-
nectivity. Here, we assume APs do not dynamically adjusi the
transmit power; that is, they are passive attackers (Sed&jioWe
discuss more sophisticated attackers in Section 5.3.4.

The transmit power control (TPC) problem has been studied ex
tensively, such as the TPC service specified in 802.11h [dd] a
power control [22]. The goal of TPC schemes is to hold trabhsmi
power to the lowest possible productive level to minimizpased
interference and to save energy. However, because a sigiteé@
from a mobile station exposes its location, the TPC problento-
cation privacy has an additional requirement: a mobiléstahust
perform TPGCsilently, without exchanging any messages.

Silent TPC is challenging: the only information availabiettie
mobile station is the received signal strength (RSS) frora vPhin
range. Due to reflection, scattering, multipath fading absbegp-
tion of radio waves, the observed signal strength variemnpre+
dictable ways. Moreover, wireless channels can be asyrunetr
Both unpredictability and asymmetry pose difficulties toediec-
tive, silent TPC scheme. To determine the feasibility of R8Sed
TPC, we use real-system experimentation and field measateme
to drive and validate our design.

5.3.1 Aslymmetry and Variations of Wireless Chan-
nels

When we choose transmission power based on received signal
strength, we rely on channel symmetry and consistency. ¥r-de
mine the feasibility of RSS-based TPC, we investigate tlygnas
metry and variation of 802.11 wireless channels. Our go&bis
determine the relationship between the two directions dfaanel
and use the path loss in one direction to infer the loss in thero
direction.

For our investigation, we set up a testbed of two mobile sta-
tions with identically configured Netgear wireless cardsgen#1



and node #2. The path losses between two cards are measured blpss (a function of RSSI) observed from the opposite dioectf

reading the Received Signal Strength Indicator (RSSIdshe
driver. Because wireless signal propagation can vary anbatly
between different environments, we placed the two nodevaria

ety of physical environments to test channel charactesistf dif-
ferent scenarios. For instance, two cards were placed orts

of a corridor, in two separate office rooms, in the corner ob&n
fice, and in an open outdoor space. We observed that the dhanne
characteristics of all of these scenarios presented siotiracter-
istics, so due to space constraints, we present the re$uit® @f
these scenarios, the corner of an office and the open outpdace s

Because TPC is based on tberrent RSSI value from the tar-
get AP, we compare RSSI values of signals transmitted attine s
time. We tested the difference of RSSI values when measuitad w
very little time separation. We measure the wireless cHaasyen-
metry as follows. Node 1 sends a probe to node 2, and then imme-
diately after receiving the probe, node 2 sends a probe te fiod
We record the RSSI readings of the received probes on eaeh nod
We repeat this bi-directional RSSI measurement 40 timegIrEi6
shows the time-synchronized RSSI readings on each nodes. It i
evident that despite the path asymmetry, RSSI readingfordi-
rections are strongly correlated. This is because pattvirsations
are mostly caused by environmental changes, which affetisti-
rections similarly over time. This strong correlation segig that
RSSI-based silent TPC can be quite successful.

Let Aqsym be a random variable representing the RSSI differ-
ence resulting from channel asymmetry. Figure 7 shows thie-pr
ability density function (PDF) o\, from our field measure-
ments. The mean of\.sym iS denoted asn.sym and variance
Oasym. According to the PDF 0f\asym, We getmasym = 1.84
andaﬁsym = 1.36 for the indoor corner scenario, andysym =
3.14 andagsw = 2.65 for the open outdoor space scenario.

Next, we investigate the variation of the wireless chanpetsr
time. We recorded on a mobile node the RSSI readings of regeiv
beacons from an AP for 2 hours. Figure 8 shows the distributio
of RSSI readings with its variance for both an indoor cornet a
an open outdoor space. LA, be a random variable represent-
ing the RSSI difference resulted from channel variatiorte wizero
mean. In our measurements, the variancA gf,., denoted as2,,,.,
is 20.92 and 10.73 for indoor corner and open outdoor spase sc
narios, respectively.

Based on the values of RSSI difference resulted from channel
asymmetry and RSSI variation, we calculate path loss eéiffee
between the two directions of the channelas= Aysym + Avar.
Aqsym andA.q, are independent, then mean of the path loss dif-
ference isn = Masym +Mvar, Wherem,q,, = 0, and the variance
02 = Ugsym + Ugar-

We define theath loss margiffPLM) to be the magnitude of the
maximum difference between path losses in opposite dinesthat
result from environmental influences and wireless chansgina
metry (that is, ofA) that we are likely to experienc&Ve arbitrarily
select the 97.7th percentile{2bove the mean), giving us

PLM = masym +2 X 4 /02,y + 02, 4)

From our experimental results on path asymmetry and vaniati
above, we choose a path loss margin of 11.3 dB for the indaer co
ner scenario and 10.5 dB for open outdoor space. For sirtplici
we use a path loss margin of 10 dB for the rest of our discussion

5.3.2 Silent TPC Design

Now we illustrate our RSS-based silent TPC design. Our desig
goal is to intelligently adjust the transmit power of the ritelsta-
tion to reduce the number of APs in range dmly using the path

the path, namely, from the in-range APs to the mobile station

passively scan
all channels

v

order all APs based on
their RSSls:
R,>=R,>=...>=R

n

exists R;-R, ;<20 dB
& R-R>20 dB?

transmit at the
maximum power

adjust transmit power to
TX,p — R+
RS,;-10dB

Figure9: The Silent TPC Scheme

Figure 9 depicts our silent TPC scheme. The 20 dB threshold
between R and R is derived from the 10 dB path loss margin
(PLM), which ensures that it is feasible to adjust the traigsion
power such that APis within the communication range while AP
is not. The amount of transmit power is adjusted such thatitee
can reliably communicate with AP After TPC, the mobile user is
able to communicate with ARAP, ... AP;_1.

The rest of this subsection describes technical detailsesn d
signing the TPC scheme and its implementation. Our silerl@ TP
scheme begins by calculating the path loss from mobilecstat
AP PLsta- ap based on the observed reverse path lossiPlsr 4
on the mobile station. The latter can be calculated as fallow

Plap_sTA = TXAP — R.

where TXap is the transmit power of the AP and R is the RSSI
reading on the mobile station. We determined that the pagh lo
margin because of path asymmetry and channel variatiomsiao
ered to be 10dB. Then, R§gp_ap is in the range ofTXpop —R—
10dB, TXpp — R+ 10dB].

The received signal strength at an access point igfa—
PLgTa_ap Where TXgTp is the mobile station transmit power.
Suppose AP cannot receive any signal from the mobile station;
then the maximum receive signal strength at ARist be less than
its receive sensitivityReceive sensitivity is the minimum RF signal
that can be successfully received by the receiver. Thistsgtysis
a function of the transmission rate and is part of the spetifin
of the wireless card. For example, a Cisco 340 wireless rm&two
adapter has receive sensitivity of -90 dBm at 1 Mbps and -88 dB
at 11Mbps [8]. We assume that the receive sensitivity (Rllof
APs is known by the mobile station. To assure that A&hnot hear
a mobile station’s communications, the mobile station nehsbse
a transmission power such that

TXsTA — PLsTA_AP < TXSTA — (TXpAP — R — 10dB)
<RS (5

where R is the signal strength at which the mobile station receives
packets from APR.

To ensure that the mobile station can communicate with the ne
work, it must ensure that it can reliably communicate witleatst
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Figure6: The Asymmetry of 802.11b Channels. Although the wirelesschannel isasymmetric, the RSSI are highly correlated.

one AP, denoted as AP Therefore, the minimum signal strength
that reaches APmust be greater than RS; that is,

TXg1A — (TXAP —R:1 +10dB) > RS, 6)

where R is the signal strength at which the mobile station receives
packets from AR. Subtracting Equation (5) from Equation (6), we
have:

R — R; > 20 dB.

This means that the TPC scheme can work only when receive
signal strength of two APs differs by at least 20 dB, so our TPC
scheme first checks whether there exists a pair of APs withfRSS
that differ by at least 20dB. If not, privacy is not improved HPC.

If there is such a pair, the mobile station adjusts its tranpower
to a level such that T¥ta — (TXpp — R: — 10 dB) < RS.

We implemented the TPC scheme in the driver of a Netgear
WG111U USB wireless card. We modified the Windows kernel
driver for this card to support the new functionality needed
transmit power control. In the Atheros driver, transmiagimwer
is controlled by a configuration parametgecHal f Dbn2, which
can be set to be any integer between 10 and 34, where 34 refwrese
the maximum and default transmit power and 10 the minimum
power. To analyze the relation of transmit power apd Hal f Don?,
we used one card as a transmitter and varied the transmjssicar
by changing this setting. We used another card as a recéiger t
recorded the RSS of each packet received from the transmitte
Figure 10 shows the RSS for each choice ptHal f Dbn2, and
shows that the transmit power adjustment range is limitgualstiol 0
dB, which is usually insufficient for TPC. We therefore usadc&
tenuator to further decrease effective transmission poyw@5 dB,
as shown by the lower curve in Figure 10. There is a gap of 15 dB
between the minimum power of the original card and the marimu
power of the card with an attenuator. The transmit power ctbe
set to levels inside the gap. Nevertheless, we will show ¢kiah
with limited transmit power control capabilities, our TP€heme
is still very useful and reliable.

5.3.3 Effectiveness of the Silent TPC
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Figure 10: Transmit Power Control

our TPC scheme on an office floor inside the Microsoft wireless
LAN coverage. On the third floor, there are six access poisitsgu
802.11b. We chose 356 spots to uniformly cover the entire,floo
and carried a laptop with our customized wireless card (géset
WG111U USB wireless card with the Windows Atheros driver) to
each of these spots. At each spot, the wireless card firsiyphss
listens to all the channels used by the APs and records the RSS
of beacons from each AP. Based on the collected RSS values, we
adjusted the card’s transmit power using our TPC scheme.

We first evaluate how often a mobile station is able to adjust
its transmit power in a manner that improves privacy. We used
the RSS data collected at the 356 spots chosen uniformly en th
floor. Figure 11 shows the reverse cumulative distributigrcfion
(reverse CDF) for the maximum RSS difference among APs &t eac
SpotARSS. More than 73 percent of the spots have RSS difference
more than 20dB and can use TPC to improve privacy. Because the

The silent TPC scheme we proposed is heuristic because of thespots we tested are uniformly distributed over the floos #fiows

unpredictability of signal strength. To test its validitye tested

that our TPC scheme is applicable in nearly three quartetBeof
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space.
Then, we evaluated the effectiveness of our TPC at those elig

ble spots. We selected ten eligible spots at random. Thelenobi

station then adjusts its transmission power using our TRG-al

increases from 11% before TPC to 23% after TPC. Localization
schemes are inaccurate in areas where one or two APs ar@ withi
range, and our scheme can increase the density of such eseas f
14 percent to 59 percent.

rithm, then sends 100 probe packets to each AP that the mobile

station can hear. Instead of modifying the AP (which was-serv
ing many wireless users), we placed a promiscuous mobili@ista

5.3.4 Privacy Gain with Our Solutions
We first consider the strongest attackers: silent attack&ush

near the AP, which records probe responses the AP sends t0 they, ers are passive sniffers that transmit no identifignals,

station. Table 1 shows the results of our experiment. APhas t
access point with the highest RSS, while AP2 has the lowe${ RS
i.,e., ARSS = Ri — R2 > 20 dB. The experiment result clearly

so mobile stations are not aware of their existence. A user ca
not assume that its location is private even if the user resiher
transmission power to allow only one AP to hear her. Neverthe

shows that before TPC, both AP1 and AP2 are in the mobile sta- less, even under this attacker model, the silent period tibe

tion’s communication range, and after TPC, only AP1 canivece
signals from the mobile station. We also looked at overalistics
on the number of APs in range for all 356 spots before and after

TPC scheme as shown in Figure 12. Before the TPC, 3% of spots

have only one AP in range, after the TPC, this percentageases

to 36%. As for spots with only two APs in range, the percentage

effective in disassociating pseudonyms from the adverdéatye
adversary wants to locate mobile stations accurately &itvagis, he
must place silent attackers densely enough such that evaitam
station can be heard by at least three attackers, even whedea n
uses the minimum transmission power. Our experimentalteesu
show that the transmission raditigs about 10 m at the minimum
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# probe responses
index | ARSS(dB) AP1 AP2
before| after | before| after
1 20.1 100 100 100 0
2 20.2 91 100 100 1
3 24.4 100 100 100 0
4 28.6 100 100 100 0
5 28.7 100 100 100 0
6 30.3 100 100 100 0
7 31.1 100 100 100 0
8 32.2 100 100 100 0
9 35.0 100 100 100 1
10 37.7 100 100 100 0

Table 1. Number of probe responses before and after TPC

transmit power. In order for a node to be heard by three attack
at all times, the attacker densipymust be such that - 7% > 3,

p > 0.095 sniffer/m?. This represents one sniffer pE0 m?. By
comparison, the density of access points deployed in tHdibgi
that we carried out our experiments is one AP evily m?, so a
silent attacker deployment costs five times as much as regi#a
deployment.

For active exposed attackers, network providers may dynami
cally adjust their access points’ transmit power to interfesith
our silent TPC scheme. The users could potentially detett ats
tackers by localizing access points using their RSS valesisers
move around, they are able to collect enough informatiomfier i
AP location and detect the abnormal behavior. In-depthsiiya-
tion on approaches against such attackers is future work.

With regard to passive exposed attackers, we present our-emp
ical measurements based on the aforementioned experioreats
office building floor. We definenix areaof an AP to be the maxi-
mum area that is covered by just this AP. The larger the mia,are
the more difficult it is for attackers to determine the molnitele’s
location since the number of mobile nodes in the area istatge
the office building setting, the distance between an AP aadéxt

0.4

Il Before TPC
B [ JAiter TPC

0.35

0.3

0.25¢

0.2r

0.15¢

Percentage of Spots

0.1r

0.05f

0 1 2 3 4 5 6
Number of APs

Figure 12: Number of APsin Range Before and After TPC

356 spots in total that were chosen uniformly on the flooretaee
34 spots whose signals can be heard by only the target APréwcco
ing to the floor map, these 34 spots cover an area of approsiynat
352 n?. Users in the mix area of 352°nare indistinguishable for
attackers after TPC.

We compare this result to an adversary using RADAR [3] with
three APs. The location precision achieved in RADAR is what t
adversary could get before TPC. According to the data pealid
in [3], the location precision is around 3 meters in termshefrne-
dian error distance, which corresponds to a circle with 8&ar
in which users are indistinguishable before TPC. Theretbeemix
area is increased 12 times (=352/28) by applying TPC. Assgmi
that mobile stations are uniformly distributed, the numbiecan-
didates for a new pseudonym is 12 times greater when using TPC
This results in an increased privacy entropylad, (12) = 3.7 in
addition to the entropy achieved by using a silent periodthéf
WLAN follows the mobility pattern of the bus system, the maxi
mum privacy entropy that our system can provide is 11.1 bits,
cluding 7.4 bits from silent period and 3.7 bits from the &iait
power control; hence, a user can be indistinguishable frarem
than a thousand users in the same coverage area.

For points outside of the protected area, location precisib
mobile stations covered by two or more APs varies amongrdiffe
ent location schemes. We do not have detailed numericaysesl
about the location precision of points outside of a protetea.
However, location precision can be notably reduced if thaler
of APs that the user communicates is reduced from three oe mor
to two or less [3].

6. OPERATIONAL MODEL

In this section, we present the privacy-enabling operatioipri-
vacy preserving systems, focusing first on mobile node oioera
then on service provider operation.

6.1 Mobile Nodes

One goal of our work is to allow each user to configure her pri-
vacy requirements as policies and to have user-friendlyatioas
that result in minimal disruption while satisfying the useprivacy

closest AP is around 30 meters. We selected one of the six &Ps a policy. In this section, we present our design for mobileaoger-

the target AP and studied the size of its mix aaéter TPC. Among

ations that achieves this goal.



Though content privacy can be protected at the granulaiap-o
plications by encrypting the transmissions of a particplavacy-
sensitive application, location privacy requires the ipgration of
the whole mobile system including all applications. Theref in
our design, a user configures the location privacy of heegysts-
ing a Boolean flag (e.g., a checkbox) indicating whether e u
desires the location privacy or not. Figure 13 and Figurethbivs
such a user interface. During a silent period (Section |8y,
user-initiated communications are rejected and the usalersed
that she cannot transmit to protect her privacy.

Azsociation | Authentication [ Connection

Autamatic connection

Whenewver thig network is detected, Windows can connect
to it autamatically.

Connect when thiz network, is in range

Privacy miocde

Keep in privacy mode vwhen this

network is connected

[ 0k l[ Cancel ]

Figure 13: User Interface: Checkbox for Privacy Mode

g

You are in privacy mode!

210 ming left in silent period

Figure 14: User Interface: Alert Message

Our system implements the opportunistic silent period{8e&.2)
and keeps track of the time period between communication ses
sions. When that period exceeds the silent period, a new MRC a
dress is requested from the AP (as discussed in Section &g u
a transmit power decodable only by the serving AP (Secti8in 5.
A user may initiate communications before the end of thentile
period. We illustrate the system operations under thisatenn
Figure 15: our system first checks whether the user has coeéigu
the mobile station to be in privacy mode. If not, the commatian
session can start immediately; otherwise, the user isealéotwait
until the end of the silent period, then new MAC is requested a
the user can start communicating. In this design, even nioagy-
sensitive users obtain new MAC addresses opportunistitiain-
crease the entropy for privacy-sensitive users, while rssugting

The user generates a
ommunication reques

Transmit power
control if needed
Have been NO Privacy mode NO Keep the
silent > T? is ON? MAC address
YES l YEsl
Change the Wait till being
MAC Address silent > Ts
Privacy
Mode
Initiate a new Start

registration process communication

Figure 15: Mobile Node Operating Model

the communications of non-privacy-sensitive users.

6.2 ServiceProviders

In Section 5.1, we described our MAC address selection sehem
by which mobile nodes frequently change their MAC addresses
this scheme, access points need provide a DHCP-like sefwice
MAC address selection in the association phase.

Service providers are also responsible for providing thgtle of
silent period to their users and the corresponding degrpeafcy
they should anticipate. Therefore, service providers ioétain the
mobility patterns of their users and choose the silent pebased
on the methodology described in Section 5.2.

7. CONCLUDING REMARKS

In this paper, we have given a thorough treatment to the prob-
lem of location privacy in wireless LANs, where users’ laoat
information can be inferred from their wireless transnaasi Our
solutions can be easily applied to cellular networks as,wdiere
the base stations are able to locate cell phone users.

Our approach in achieving location privacy is to have mobile
stations frequently change their pseudonyms (e.g., MAC lénd
addresses), to pause opportunistically for a silent perod to
perform silent TPC to reduce the location precision. Wefiasti
the practicality of our schemes and evaluated their effitgcys-
ing a combination of real-system experimentation, sinioatand
analysis. Given certain mobility pattern and wireless LAder-
age, our system can offer up to 11-bit entropy protectioridoa-
tion privacy with little performance overhead. We also dasd our
privacy-enabling operations on mobile nodes to be usendily
and incur minimal disruption to both privacy-sensitive @miacy-
indifferent users.

A number of open problems still remain. It is inevitable that
privacy-enabled systems sacrifice service quality. Usepsivacy
mode will have their communications delayed if they commaté
before a silent period ends. This is an inherent cost of iocadri-
vacy. This is certainly disruptive to real-time applicasosuch as
Voice-Over-IP or long communication sessions such as waich
video online. Nevertheless, many applications such aaribhstes-
saging, e-mail, and web surfing can still be used in privaabéed
wireless systems. Our future work will investigate the ¢raffl be-
tween privacy and service quality.

Our silent transmit power control scheme reduces the sigral
noise ratio received at the AP, possibly reducing the da&atm
ensure successful transmission. Our experiments sergckefs at



the lowest bit rate. Further study is needed on the interptayur
silent transmit power control and wireless card rate céntro
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