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ABSTRACT
The broadcast and tetherless nature of wireless networks and the
widespread deployment of Wi-Fi hotspots makes it easy to remotely
locate a user by observing her wireless signals. Location isprivate
information and can be used by malicious individuals for black-
mail, stalking, and other privacy violations. In this paper, we an-
alyze the problem of location privacy in wireless networks and
present a protocol for improving location privacy. Our basic ap-
proach is to obfuscate several types of privacy-compromising infor-
mation revealed by a mobile node, including sender identity, time
of transmission, and signal strength. Our design is driven by real-
system implementation and field experiments along with analysis
and simulations. Our system allows users to choose the levelof
privacy they desire, thereby increasing the performance ofless pri-
vate users (while not sacrificing private users’ privacy at the same
time). We evaluated our system based on real-life mobility data
and wireless LAN coverage. Our results show that a user of our
system can be indistinguishable from a thousand users in thesame
coverage area.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous

General Terms
Measurement, Design, Experimentation, Security

Keywords
Privacy, Localization, 802.11

1. INTRODUCTION
In recent years, we have witnessed the pervasive deployment

of Wi-Fi hotspots (e.g. [1, 5, 27]) which has empowered people
to communicate and compute almost anywhere and anytime. The
wireless medium and its broadcast nature also makes it much easier
to compromise a user’s privacy: an attacker that sniffs packets sent
over the air can easily determine a user’s communication pattern,
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the contents of her communications (if unencrypted), or even to in-
fer a user’s physical location, which can be a threat to her physical
security. For the latter problem of location determination, previous
research [2, 23] has shown that precise positioning of a mobile node
is possible: in Ladd et al.’s scheme [23], the received signal strength
of the mobile node at different access points can map the nodeto
within 1 meter range with at most 50% error. In wireless networks,
traffic analysis and confidentiality can be protected through tradi-
tional approaches, such as encryption and traffic mixing [6,25];
however, solutions for protecting a user’s physical location infor-
mation are scarce and lacking. In this paper, we treat the problem
of location privacy.

Our basic approach to location privacy is to obfuscate privacy-
compromising information that is leaked in the course of wireless
communications. This leakage occurs through five sources: time,
location, sender node identity (such as MAC address), receiver
node identity, and content. While content can be protected by en-
cryption and receiver identity can be protected by going through
a MIX-net [6] or Crowd [25], the broadcast nature of the wireless
media inevitably exposes the first three dimensions which can be
used to infer the user location. We obfuscate these three dimen-
sions as follows:

• Anonymize the user or node identity with frequently chang-
ing pseudonyms. While the analog characteristic of a wire-
less card may be fingerprinted and serves as a form of iden-
tity, the feasibility of RF fingerprinting of noisy wirelessset-
ting has yet to be proven. Furthermore, RF fingerprinting
requires costly hardware [13], so using RF fingerprinting for
user tracking would require wide deployment at a high cost
to attackers.

• Unlink different pseudonyms of the same user with silent pe-
riods between different pseudonyms.

• Increase the entropy of the attackers’ location estimationby
reducing the precision of location algorithms; mobile nodes
in our system reduce their transmission range through power
control to reduce the number of nodes that can collaborate to
determine the nodes’ location.

While some aspects of these ideas have appeared in research lit-
erature [16, 4, 20, 21], in our work, we aim to evaluate and quantify
the efficacy of these mechanisms along with their proper parameter
configurations for real wireless systems by using a combination of
real-system experimentation, simulation, and analysis.

In this paper, we analyze the achieved location privacy of a mo-
bile node using the metric ofprivacy entropy. To obfuscate the
transmission time, we introduce theopportunisticsilent period,
which takes place during the idle time between users’ communica-
tion sessions. We further developed a methodology for deriving the



duration of the silent period to satisfy certain privacy requirements,
given the mobility pattern within a service area. We conducted a
case study evaluating the impact of silent period on privacyusing
the mobility pattern of Seattle buses. We find that taking theop-
timal silent period, the system offers 8 bits of entropy for privacy
protection; that is, after one silent period, the user is indistinguish-
able from28 other users in the service area of the wireless network.
To reduce the precision of location estimation, we devised asilent
transmit power control algorithm based on our field measurements
from both indoor and outdoor environments. We find that the preci-
sion of localization schemes can be reduced by a factor of12 after
applying our transmit power algorithm, which is equivalentto in-
creasing privacy entropy by 3.7 bits. In addition, we propose user-
friendly operationsin privacy protected systems that incur minimal
disruptions to user communications. This allows the systems to
increase entropy for privacy-sensitive communications without re-
ducing the performance of privacy-insensitive communications. To
verify the practicality of our approach, we implemented ourprivacy
protection mechanisms for a Netgear WG111U USB wireless card
by extending its driver.

It may seem that location privacy is inherently at conflict with
wireless service provisioning and popular location-basedservices.
Indeed, some wireless service billing and authorization schemes re-
quire the identity of a user or her mobile station, and location-based
services must first infer the user location before providingservices
based on user location. However, we argue that any such limita-
tions are particular to theimplementationof these services. A user
need not reveal her identity to receive wireless service; telephone
networks already have cash-purchased calling cards for anonymous
authorization. Wireless service provision can take the same ap-
proach of separating billing from service provision and allowing
billing to be anonymous, as in [20]. For location-based services,
a mobile station can calculate its own current location, andonly
give this information to location-based services trusted by the user.
Therefore, it is feasible to give users the choice of privacyin wire-
less networks and location-based services.

The rest of the paper is organized as follows. We first review
existing RF-based localization systems and previous solutions for
protecting location privacy in Section 2 . We define the attacker
model in Section 3. Section 4 gives the definition of privacy en-
tropy. In Section 5, we present our detailed design for achiev-
ing location privacy including frequently changing pseudonyms,
silent period and reducing location precision; our design was driven
by real system experimentation, field measurement and simulation
analyses. In Section 6, we describe how our location privacy-
enabled mobile nodes and service providers operate. Finally, we
conclude our paper and discuss remaining challenges in Section 7.

2. RELATED WORK

2.1 Location technologies
Various approaches have been proposed to estimate the location

of mobile users in wireless networks. In this paper we only consider
RF-based localization systems, because RF-based localization sys-
tems do not require extra infrastructure and specialized hardware
and technologies that are severely limited. For instance, localiza-
tion systems based on time of arrival (TOA) require multipleanten-
nas and a very fine-grained timer. Furthermore, TOA techniques
are of limited usefulness in urban environments due to multipath
interference, whereas RF-based localization is effectivein both in-
door and outdoor scenarios.

Existing RF-based localization systems (such as [2, 23, 7])are
able to accurately locate users using already deployed access points

(APs) in WLANs, under the condition that three or more APs are
in the communication range of users. Bahl and Padmanabhan [2]
and Ladd et al. [23]’s experiments in normal office buildingsde-
termine location on the order of meters. For instance, Ladd et
al. [23] achieve accuracy of better than 1 meter over 50% of the
time. Cheng et al. [7] studied metropolitan-scale Wi-Fi location
determination using available 802.11 APs in cities. Their experi-
mental results show median accuracy of 15–30m in large outdoor
areas. These systems work in two phases: a training phase anda
positioning phase. The training phase uses a procedure similar to
“war-driving” to obtain a large amount of signal data. The training
data is then used to build a “radio map”. In the positioning phase,
the signal data of the target is recorded by all APs that can hear the
target’s transmissions. This data is then compared to the radio map
to estimate the target’s location.

2.2 Application-Level Location Privacy
The location privacy problem is of great interest in location-

based services because location data needs to be revealed toex-
ternal services. To retain location privacy, users can use their own
sensors to calculate their own location (e.g. Cricket [18]). Such
systems preserve location privacy when users do not emit anyde-
tectable signals. However, in the course of transmitting their lo-
cation or receiving the location-based service, mobile nodes will
transmit wireless network packets, and these systems do notpro-
tect against privacy compromise inherent in such transmissions.

Gruteser and Grunwald [15] discuss schemes in which the spatial
and temporal accuracy of location information is reduced such that
at leastk users are indistinguishable. The IETFGeoprivworking
group [12] has been chartered to design protocols and APIs that
consider the privacy and security issues inherent in the transfer of
high resolution location information to external servicesand the
storage of such information at location servers. This paperdiffers
from the work of Gruteser and Grunwald [15] and Geopriv [12]
in that they target location information provided by applications,
whereas we examine the privacy of location information thatcan
be inferred from the wireless transmissions of network users.

2.3 Network-Level Location Privacy
Solutions for location privacy risks have been proposed by sev-

eral research groups (e.g. [16, 4, 20, 21, 19]). All of these solutions
propose the use of frequently changing user pseudonyms. He et
al. [19] concentrates on the use of blind signatures to provide for
the anonymous authentication of new pseudonyms. Anonymous
authentication is only a small part in protecting location privacy.
Other issues we address in this paper include obfuscating sender
identity, time of transmission and signal strength.

Gruteser and Grunwald [16] examines the effect of pseudonym
changes on locating users based on a wireless trace that contains
the AP association of users. They do not, however, consider at-
tacks correlating different pseudonyms of the same user based on
mobility pattern of users. For example, if at timet0, we know that
a user moves along a direction at speedv, and later on at timet we
see a packet along the same direction of distancev(t − t0), then
we know most likely this packet is from the same user. To reduce
this risk, Hu and Wang [20] and Huang et al. [21] introducesilent
periods, where privacy-sensitive users intentionally do not trans-
mit, in order to reduce the effectiveness of such correlations. Our
work, building on top of [20] and [21], uses anopportunisticsilent
period. We further provide a methodology for calculating the opti-
mal silent period given a mobility pattern. We give an example of
such a calculation based on a case study using actual mobility from
the Seattle-area bus system. Our previous work [20] broughtup



the previously ignored problem of location privacy and pointed out
future directions for preserving location privacy. In thiswork, we
extend those solutions and present the protocols in detail.Further-
more, we design an operational model for location privacy preserv-
ing systems, and introduce the privacy entropy metric to measure
the degree of privacy our system provides.

Mix zones [4] reduce the correlation between two pseudonyms
of the same user. Users are not allowed to transmit in the mix zone;
these mix zones are essentially spatial versions of the silent period.
However, the mix zone scheme requires each node to know its exact
location. Furthermore, the constrained communications area will
reduce participation by privacy-insensitive nodes.

Reducing the precision of a location estimation scheme increases
the uncertainty in determining a device’s location since many other
devices are also in the same course-grained location. Görlach et
al. [14] suggests that users can hinder RF-based localization tech-
niques by distributing their data on pseudo-randomly chosen chan-
nel. An attacker would then be less able to distinguish, and thus
localize, signals transmitted in this way. However, this solution as-
sumes that the access point operator is trusted, whereas oneof our
objectives in this paper is to protect a user’s location privacy even
when the access points cannot be trusted (e.g., communication logs
on the APs are compromised). Rather than using channel-hopping
to decorrelate device transmissions, we reduce transmission power
to decrease the number of APs in range, so that the localization
algorithms in [2] cannot succeed.

2.4 RF Fingerprinting
As we discussed in the previous subsection, anonymity is a pre-

requisite of location privacy, without which first-hop access points
could easily pinpoint the location of the identified user using lo-
calization algorithms mentioned above. RF fingerprinting [17, 13]
could potentially be used to identify a wireless card by analyzing
imperfections in the analog components to determine whether or
not two packets were sent from the same transmitter. For example,
imperfections in the oscillator will cause the carrier frequency to
deviate from the specified frequency by an amount unique to each
transmitter.

Nevertheless, the literature has yet to establish the feasibility of
RF fingerprinting. While Gerdes et al. [13] have demonstrated that
it is possible to fingerprint an Ethernet device, the noise inthe wire-
less networks would pose significant challenges and the character-
istics of fingerprints are likely to change due to multipath prop-
agation, fading, temperature variation, battery condition, Doppler
shift and device aging. Because of the high variability introduced
by wireless environments, and the similarity of RF fingerprints be-
tween wireless cards of the same model, the cost of building an RF
fingerprinting-enabled network is very high. First, clearly distin-
guishing between cards having similar fingerprints requires a high
speed and high resolution ADC (Analog-to-Digital Converter) in
the receivers, which is expensive. In fact, Gerdes et al. [13] used
an oscilloscope to sample received signals. Secondly, the training
phase to build RF fingerprinting profiles requires a long time(on
the order of a couple of hours), and such protocols must be up-
dated frequently. This cannot be easily done in mobile and privacy
sensitive environments.

Our privacy schemes raise the bar significantly for attackers lo-
calizing mobile users. Attackers must resort to RF fingerprinting
which requires additional hardware and expensive deployment of
such hardware equipment.

Furthermore, although it is not possible to duplicate a specific RF
fingerprint, it is possible for privacy-sensitive devices to hide their
RF fingerprints intentionally. For instance, most RF fingerprint-

ing identification schemes analyze the transient signals transmitted
when devices are being turned on. By intentionally adding strong
noise during the transient period, such transient signals can be made
difficult to distinguish. Further research on such concealing of RF
signals for privacy is an important piece of future work.

3. ATTACKER MODEL
In wireless networks, the problems of confidentiality, authen-

ticity, authentication and accessibility are also very important and
challenging. However, they are beyond the scope of this paper. We
assume that certain mechanisms have been applied to protectthese
aspects of security.

The attackers of our interest are those that aim to expose the
location information of mobile users in wireless networks.There
aresilentattackers andexposedattackers.

Silent attackers are sniffers that do not emit any signals, but
only listen and localize mobile users. Silent attackers arestrongest
when they are densely scattered throughout wireless service areas,
in which case they are capable of precisely locating a mobileuser.
Such an attacker would need to have substantial resources; for ex-
ample, it could be a government or a competing service provider.

In contrast, exposed attackers are network providers that must
provide wireless services in addition to obtaining a mobilenode lo-
cation. Although network providers themselves could be trustwor-
thy, a provider may accidentally leak privacy-sensitive information;
such leakage is now rampant for other types of private information,
and can be due to malicious employees, hackers, theft, or lack of
sufficient review and oversight.

Among exposed attackers, we further distinguishactiveattackers
andpassiveattackers. Active attackers refer to network providers
that dynamically adjust their base stations’ transmissionpower to
react to the network load or to more precisely locate a user. Pas-
sive attackers are network providers that do not change basestation
behavior.

4. PRIVACY ENTROPY
The concept ofentropywas first introduced in Information The-

ory [26] to quantify the uncertainty one has before an experiment.
The higher the privacy entropy value is, the more uncertain attack-
ers will be of their user location inference, and hence the better
privacy protection our system offers. Given an attacker andthe set
of all mobile usersU , let λ be the observation of the attacker about
the user at some locationL. Given observationλ, the attacker com-
putes a probability distributionP over usersu ∈ U . We define the
privacy entropyof this observationλ to be

Hλ = −
�

u∈U

Pu,λ log2(Pu,λ). (1)

We could interpret the privacy entropy as the number of bits of
additional information that the attacker needs to definitively iden-
tify the useru observed withλ at the locationL. Obviously, if one
user is assigned a probability of1, then the attacker already has
enough information to identify the user. To determine the privacy
entropy, we need to determine the probability distributioncalcu-
lated by the attacker. In Section 5, we show how this might be
calculated in a realistic mobile system.

5. ACHIEVING LOCATION PRIVACY
In this section, we present our location privacy solutions in de-

tail. Our approach obfuscates three sources of location privacy
leakage: sender identity (Subsection 5.1), time of transmission (Sub-
section 5.2), and signal strength (Subsection 5.3). In order to closely



relate our design to real systems, we focus our description on a pro-
tocol built around an 802.11 WLAN, but our techniques can gener-
alize to other types of wireless networks, such as cellular networks.

5.1 Pseudonym
Anonymity is a prerequisite for location privacy; without anonymity,

an attacker can easily link a user to different locations. Toprevent
an attacker from using user identity for tracking, users must use fre-
quently changing pseudonyms for communications. In an 802.11
WLAN, MAC and IP addresses are user identities that must be pro-
tected by using pseudonyms. However, changing pseudonyms cre-
ates several design problems.

One important factor in choosing pseudonyms is to avoid ad-
dress collisions with other network nodes. Because there are only
48 bits in a MAC address, randomly chosen addresses have a high
probability of collision in networks as small as224 due to the birth-
day paradox. In our design, MAC addresses are assigned by access
points. When a user comes within transmission range of an access
point and wants to connect to it, the user first sends out a message to
request a MAC address. This request must be sent from a MAC ad-
dress, but using the interface’s unique MAC address would reveal
user identity, and using a randomly chosen MAC address may con-
flict with an established user. In our system, the user uses a well-
known address called thejoin addressto avoid such conflicts, and
distinguish between multiple simultaneous requests through the use
of a 128-bit nonce.

When the AP receives a MAC address assignment request from
the join address, it chooses an unused address from its MAC ad-
dress pool and sends a reply that includes both the nonce from
the request packet and the assigned MAC address. If the under-
lying physical layer requires acknowledgment for unicast packets
(as does 802.11), this reply packet is sent as a link-layer broadcast
packet to avoid an acknowledgement implosion. When a node re-
ceives such a reply packet, it checks to see if the nonce corresponds
to a request that it has sent, and if so, it begins to use the MACad-
dress assigned by the reply packet. The process of assigningMAC
addresses is depicted in Figure 1.

Figure 1: MAC address selection

Another network-layer identifier is the IP address. IP addresses
could be assigned through Statistically Unique Cryptographically
Verifiable IPv6 addresses [24]. Alternatively, since base stations
already provide unique MAC addresses, they can also assign IP
addresses from a pool as part of this protocol. Unlike network-
layer identifiers such as MAC and IP addresses, we do not need
to extract and obfuscate application layer user identitiessuch as e-
mail usernames because such identities are transmitted as transport
layer payload content which can be protected through encryption.

Changing the MAC and IP addresses may cause disruptions when
the user associates with a new AP. Our system only allows ad-
dress changes just before the start of a new association (Thede-
tailed operating mode of mobile users is discussed in Sec. 6.). To
minimize the disruption of communications, users do not change
their addresses during inter-AP handoff as long as they stayasso-
ciated. Another problem with IP address changes is that sources
cannot easily communicate with such a node. Previous work [20]

addresses this problem through the use of trusted anonymousbul-
letin boards, together with cryptographic mechanisms to protect
user identity.

When pseudonyms change between two associations, the attacker
cannot trivially identify a user at a particular location. Without any
additional information, the privacy entropyH is equal tolog2(N),
whereN is the total number of users in the network. However,
when an attacker accumulates the location information for all pack-
ets sent in the network, the attacker can attempt to correlate differ-
ent pseudonyms with the same user. For example, if a user was
moving along a road at some speed, then a packet further along
the same road is more likely sent by that user. In order to reduce
such correlations, we use asilent periodto unlink communications
under different pseudonyms of the same user.

5.2 Opportunistic Silent Period
During a silent period, a user does not send any wireless trans-

missions. A silent period allows a sender to “mix” in with other
possible nodes (through natural node mobility). The effectiveness
of silent periods depends heavily on user density: when the user
density is low, such as when a user is at home, an attacker can eas-
ily identify and locate the user even if the user frequently changes
her mobile node’s pseudonym and uses a long silent period. There-
fore, location privacy systems are most effective at publicplaces
with high user density, such as coffee shops and airports.

Forced silent periods can disrupt communications; for example,
TCP sessions will be broken, and real-time communications cannot
continue. To minimize disruptions, we introduce the concept of
an opportunisticsilent period, which takes place during the idle
time between users’ communications. In an opportunistic silent
period, the user’s machine detects that it has not transmitted for a
period in excess of the silent period, and uses that time to change
pseudonyms. This decision can result in a changed pseudonym
either as soon as sufficient time has elapsed, or when the usernext
wishes to transmit. Opportunistic silent periods mitigatethe impact
of silent periods on user communications.

We analyzed the WLAN trace data at Dartmouth College from
CRAWDAD [9]: 50% of the sessions have a duration of 4 minutes
or less (Figure 2); more than 50% of inter-session times are longer
than 10 minutes, as shown in Figure 3. This data shows that oppor-
tunistic silent periods are quite suitable for WLANs.

5.2.1 Methodology for Choosing a Silent Period
This section describes the methodology for determining a silent

period that achieves certain privacy requirements. As mentioned
earlier, the efficacy of silent period depends on user density. There-
fore, we take the mobility pattern within a service area as input
to our derivation. Mobility pattern data consists of triples <time,
pseudonym, location>. Such data can be easily collected and pro-
vided by third parties, and correctness can be verified by cross-
checking data from multiple providers.

We compute the privacy entropy as follows. In the training phase,
we derive the probability distribution given a fixed observation lo-
cationLob. Given the mobility pattern of the service area (the train-
ing set), we find all the users which passLob; and denote the set
of such users asK. For each timet1 that a useri is observed at
Lob, we trace the training data backwards to timet0 = t1 − ∆t
(for a fixed∆t), and record the locationLi where useri is at t0.
By tracing backwards all users that pass the observation location,
we obtain a set of|K| locationsLOC(∆t) = {Li|i ∈ K}, where
some elements in the set may be identical. Given a specific loca-
tionLi from LOC(∆t), we defineκi to be the number of elements
in LOC(∆t) which is the same asLi. κi represents the number
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Figure 2: CDF of session duration from Dartmouth campus-
wide WLAN trace

of users in the training set that travel fromLi to Lob in time ∆t.
Therefore if the time interval is fixed as∆t and a user is observed
at Lob at timet1, the conditional probability that this user was at
Li at t0 is

pi(∆t) =
κi

|K|
. (2)

This conditional probability represents how likely a user was inLi

∆t time ago, given it is observed atLob.
In the test phase, we usepi(∆t) to compute the privacy entropy.

Suppose the silent period is in the range of[T min, T max], When-
ever a new pseudonym is observed inLob at time t, we define
M as the set of thecandidatepseudonyms from timet − T max

to t − T min that might be linked to this new pseudonym. Sup-
posei is one of the candidate pseudonyms, which is inLi at time
t−∆ti, ∆ti ∈ [T min, T max]. Then the probability thati is linked
to the new pseudonym among these candidates is

Pi,(Li,Lob) =
pi(∆ti)�

m∈M
pm(∆tm)

, (3)

wherePi,(Li,Lob) is the probability distribution used for privacy
entropy. Therefore we could calculate the privacy entropy of a user
in locationLob according to Equation (1). In addition to location
information (Li,Lob), the observationλ in Equation (1) can in-
clude additional information such as speed and direction ofmove-
ment, which improves the accuracy of the location inference. In the
following case study on bus data, we consider location and velocity
information.

The above calculation considers the worst-case scenario where
the attacker has the complete mobility pattern data. When the at-
tacker does not have complete data, such as when mobility pattern
data is collected from a privacy-enabled service area, our scheme
achieves even higher privacy levels.

Our goal is to choose a silent period that maximizes the privacy
entropy. Previous work shows that silent periods must be random-
ized [20]; otherwise, if an attacker sees two pseudonyms used ex-
actlyt seconds apart (wheret is the silent period) then he will know
that those two pseudonyms belong to the same user with high prob-
ability. We use a random silent period ofTd + Tr, whereTd is
deterministic andTr is drawn from a uniform distribution between
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Figure 3: CDF of Duration between Sessions from Dartmouth
campus-wide WLAN trace

0 andT max
r . ThusT min = Td andT max = Td + T max

r . The
derived silent period is an upper bound of the best possible privacy.

5.2.2 Case Study on Bus Mobility Data
In this section, we give a case study on how to derive silent pe-

riod using the above methodology. Here, we use the mobility data
of Seattle bus system from the BusView system [10]. We chose
the bus data because it consists of both a realistic mobilitypattern
and accurate location information. To obtain such data in WLANs
requires a large number of users and for each user to be equipped
with a GPS system. Due to our limited resources, we used the bus
data as an alternative. Though the results are definitely different
from those in WLANs, we will show that they provide very valu-
able insights on choosing the optimal silent period.

We divided the bus data into a 5-day training set and an 8-hour
test set. We quantized the time in our data to 30 second intervals
and the area into square sections 300 feet on each side. Speedis
quantized into bins aligned on 5mph boundaries and movement
direction into 8 equally-sized slices. We chose an arbitrary area
section as the observation area (Lob). When a bus enters the ob-
servation areaLob at timet, we consider it to have started using
a new pseudonym. If the length of the silent period is uniformly
distributed on[Td, Td + T max

r ], then the candidate buses which
can be linked to the new pseudonym must have last been used in
the time interval[t − Td − T max

r , t − Td]. GivenPi,(Li,Lob) of
each of these candidatesi, we calculate the privacy entropy of the
new pseudonym. Because the buses are not users of a wireless data
network, we do not have actual communication patterns or silent
period selections, so for the purposes of this experiment, we first
chose a communication schedule for each bus, based onTd and
Tr, and a communication time for each session chosen from a uni-
form distribution with a mean of10 minutes. Therefore, only buses
which stop one of their communication sessions during the interval
[t − Td − T max

r , t − Td] can be considered as candidate nodes.
Figure 4 shows the relationship between privacy entropy andthe

length of the silent period. The x-axis is the deterministicsilent
periodTd and each curve shows a fixed range for the random silent
periodTr. Figure 4 shows that the privacy entropy reaches a max-
imum whenTd is around 20 minutes, independent ofTr. In par-
ticular, whenTr is 4 minutes, the system achieves its maximum
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Figure 4: Privacy Entropy vs. Deterministic Silent Period

entropyH = 5.38 with a Td of 19 minutes 20 seconds. When
Td is small, increasingTd increases the entropy. However, this
trend does not continue with increasingTd. Increasing the silent
period increases the fraction of buses that are in a silent period, so
fewer buses transit from communicating to silence in a particular
time interval. Therefore entropy decreases after it reaches a max-
imum point. We also observe that entropy is periodic, ratherthan
monotonically increasing or decreasing. This is because a single
bus is generally scheduled to periodically service a route for the
entire day. The figure also shows that privacy entropy is monoton-
ically increasing with increasingTr. This is because by increasing
the random silent period, the length of the silent period interval
increases, so it includes more candidate buses.

To determine an optimal value forTr, we fixed the value of the
deterministic part of the silent periodTd to the optimal value of
19 minutes 20 seconds. We then plot the entropy againstT max

r in
Figure 5. The figure shows that beforeT max

r reaches 12 minutes,
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the privacy entropy increases quickly, but after it crosses12 minutes,
the rate of increase drops sharply. To minimize the silent periods

while retaining good location privacy, we chooseT max
r close to

but not greater than 12 minutes. We also plot the entropy against
T max

r whenTd = 0 in Figure 5. The maximum entropy is only
around 3.5 because withTd = 0, because the target user may se-
lect silent period very close to 0. In this case, there are very few
candidates, so the entropy is very low. Therefore, the system must
set a lower boundTd > 0 for the silent period.

5.2.3 Summary
In this subsection, we provided a methodology for calculating

the optimal silent period. This optimal value gives an upperbound
on the necessary silent period; that is, the system cannot achieve
better privacy even when using a longer silent period. In real sys-
tems, the selection of silent period depends on the tradeoffbe-
tween service quality and privacy. A system requiring high privacy
chooses the optimal silent period and sacrifices its servicequal-
ity by introducing long communication disruptions, while asystem
requiring high communication quality may choose a shorter silent
period.

5.3 Location Precision
By reducing the location precision of a localization scheme, we

can offer better privacy to mobile users since the presence of the
mobile user is blended in with more users in the larger area. Bahl et
al. [3] have shown that the precision to which we can locate a mo-
bile user is related to the number of APs within that user’s commu-
nication range. Their experiments showed that there is significant
improvement from 1 AP to 2 APs and from 2 APs to 3 APs, but
the improvement is small when using more than 3 APs. To reduce
location precision, we use transmit power control to minimize the
number of APs in range while ensuring at least one AP for con-
nectivity. Here, we assume APs do not dynamically adjust their
transmit power; that is, they are passive attackers (Section 3). We
discuss more sophisticated attackers in Section 5.3.4.

The transmit power control (TPC) problem has been studied ex-
tensively, such as the TPC service specified in 802.11h [11] and
power control [22]. The goal of TPC schemes is to hold transmit
power to the lowest possible productive level to minimize imposed
interference and to save energy. However, because a signal emitted
from a mobile station exposes its location, the TPC problem for lo-
cation privacy has an additional requirement: a mobile station must
perform TPCsilently, without exchanging any messages.

Silent TPC is challenging: the only information available to the
mobile station is the received signal strength (RSS) from APs within
range. Due to reflection, scattering, multipath fading and absorp-
tion of radio waves, the observed signal strength varies in unpre-
dictable ways. Moreover, wireless channels can be asymmetric.
Both unpredictability and asymmetry pose difficulties to aneffec-
tive, silent TPC scheme. To determine the feasibility of RSS-based
TPC, we use real-system experimentation and field measurements
to drive and validate our design.

5.3.1 Asymmetry and Variations of Wireless Chan-
nels

When we choose transmission power based on received signal
strength, we rely on channel symmetry and consistency. To deter-
mine the feasibility of RSS-based TPC, we investigate the asym-
metry and variation of 802.11 wireless channels. Our goal isto
determine the relationship between the two directions of a channel
and use the path loss in one direction to infer the loss in the other
direction.

For our investigation, we set up a testbed of two mobile sta-
tions with identically configured Netgear wireless cards, node #1



and node #2. The path losses between two cards are measured by
reading the Received Signal Strength Indicator (RSSI) inside the
driver. Because wireless signal propagation can vary substantially
between different environments, we placed the two nodes in avari-
ety of physical environments to test channel characteristics of dif-
ferent scenarios. For instance, two cards were placed on twoends
of a corridor, in two separate office rooms, in the corner of anof-
fice, and in an open outdoor space. We observed that the channel
characteristics of all of these scenarios presented similar character-
istics, so due to space constraints, we present the results of two of
these scenarios, the corner of an office and the open outdoor space.

Because TPC is based on thecurrent RSSI value from the tar-
get AP, we compare RSSI values of signals transmitted at the same
time. We tested the difference of RSSI values when measured with
very little time separation. We measure the wireless channel asym-
metry as follows. Node 1 sends a probe to node 2, and then imme-
diately after receiving the probe, node 2 sends a probe to node 1.
We record the RSSI readings of the received probes on each node.
We repeat this bi-directional RSSI measurement 40 times. Figure 6
shows the time-synchronized RSSI readings on each node. It is
evident that despite the path asymmetry, RSSI readings for both di-
rections are strongly correlated. This is because path lossvariations
are mostly caused by environmental changes, which affects both di-
rections similarly over time. This strong correlation suggests that
RSSI-based silent TPC can be quite successful.

Let ∆asym be a random variable representing the RSSI differ-
ence resulting from channel asymmetry. Figure 7 shows the prob-
ability density function (PDF) of∆asym from our field measure-
ments. The mean of∆asym is denoted asmasym and variance
σ2

asym. According to the PDF of∆asym, we getmasym = 1.84
andσ2

asym = 1.36 for the indoor corner scenario, andmasym =
3.14 andσ2

asym = 2.65 for the open outdoor space scenario.
Next, we investigate the variation of the wireless channelsover

time. We recorded on a mobile node the RSSI readings of received
beacons from an AP for 2 hours. Figure 8 shows the distribution
of RSSI readings with its variance for both an indoor corner and
an open outdoor space. Let∆var be a random variable represent-
ing the RSSI difference resulted from channel variations with a zero
mean. In our measurements, the variance of∆var, denoted asσ2

var,
is 20.92 and 10.73 for indoor corner and open outdoor space sce-
narios, respectively.

Based on the values of RSSI difference resulted from channel
asymmetry and RSSI variation, we calculate path loss difference
between the two directions of the channel as∆ = ∆asym + ∆var.
∆asym and∆var are independent, then mean of the path loss dif-
ference ism = masym+mvar, wheremvar = 0, and the variance
σ2 = σ2

asym + σ2
var.

We define thepath loss margin(PLM) to be the magnitude of the
maximum difference between path losses in opposite directions that
result from environmental influences and wireless channel asym-
metry (that is, of∆) that we are likely to experience. We arbitrarily
select the 97.7th percentile (2σ above the mean), giving us

PLM = masym + 2 × �σ2
asym + σ2

var. (4)

From our experimental results on path asymmetry and variation
above, we choose a path loss margin of 11.3 dB for the indoor cor-
ner scenario and 10.5 dB for open outdoor space. For simplicity,
we use a path loss margin of 10 dB for the rest of our discussion.

5.3.2 Silent TPC Design
Now we illustrate our RSS-based silent TPC design. Our design

goal is to intelligently adjust the transmit power of the mobile sta-
tion to reduce the number of APs in range byonly using the path

loss (a function of RSSI) observed from the opposite direction of
the path, namely, from the in-range APs to the mobile station.
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Figure 9: The Silent TPC Scheme

Figure 9 depicts our silent TPC scheme. The 20 dB threshold
between R1 and Ri is derived from the 10 dB path loss margin
(PLM), which ensures that it is feasible to adjust the transmission
power such that AP1 is within the communication range while APi

is not. The amount of transmit power is adjusted such that theuser
can reliably communicate with AP1. After TPC, the mobile user is
able to communicate with AP1, AP2, . . . , APi−1.

The rest of this subsection describes technical details on de-
signing the TPC scheme and its implementation. Our silent TPC
scheme begins by calculating the path loss from mobile station to
AP PLSTA−AP based on the observed reverse path loss PLAP−STA

on the mobile station. The latter can be calculated as follows:

PLAP−STA = TXAP − R.

where TXAP is the transmit power of the AP and R is the RSSI
reading on the mobile station. We determined that the path loss
margin because of path asymmetry and channel variation is consid-
ered to be 10dB. Then, PLSTA−AP is in the range of[TXAP−R−

10 dB, TXAP − R + 10 dB].
The received signal strength at an access point is TXSTA −

PLSTA−AP where TXSTA is the mobile station transmit power.
Suppose APi cannot receive any signal from the mobile station;
then the maximum receive signal strength at APi must be less than
its receive sensitivity. Receive sensitivity is the minimum RF signal
that can be successfully received by the receiver. This sensitivity is
a function of the transmission rate and is part of the specification
of the wireless card. For example, a Cisco 340 wireless network
adapter has receive sensitivity of -90 dBm at 1 Mbps and -83 dBm
at 11Mbps [8]. We assume that the receive sensitivity (RS) ofall
APs is known by the mobile station. To assure that APi cannot hear
a mobile station’s communications, the mobile station mustchoose
a transmission power such that

TXSTA − PLSTA−AP≤TXSTA − (TXAP − Ri − 10 dB)

<RS, (5)

where Ri is the signal strength at which the mobile station receives
packets from APi.

To ensure that the mobile station can communicate with the net-
work, it must ensure that it can reliably communicate with atleast
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Figure 6: The Asymmetry of 802.11b Channels: Although the wireless channel is asymmetric, the RSSI are highly correlated.

one AP, denoted as AP1. Therefore, the minimum signal strength
that reaches AP1 must be greater than RS; that is,

TXSTA − (TXAP − R1 + 10 dB) > RS, (6)

where R1 is the signal strength at which the mobile station receives
packets from AP1. Subtracting Equation (5) from Equation (6), we
have:

R1 − Ri > 20 dB.

This means that the TPC scheme can work only when receive
signal strength of two APs differs by at least 20 dB, so our TPC
scheme first checks whether there exists a pair of APs with RSSIs
that differ by at least 20dB. If not, privacy is not improved by TPC.
If there is such a pair, the mobile station adjusts its transmit power
to a level such that TXSTA − (TXAP − Ri − 10 dB) < RS.

We implemented the TPC scheme in the driver of a Netgear
WG111U USB wireless card. We modified the Windows kernel
driver for this card to support the new functionality neededfor
transmit power control. In the Atheros driver, transmission power
is controlled by a configuration parametertpcHalfDbm2, which
can be set to be any integer between 10 and 34, where 34 represents
the maximum and default transmit power and 10 the minimum
power. To analyze the relation of transmit power andtpcHalfDbm2,
we used one card as a transmitter and varied the transmissionpower
by changing this setting. We used another card as a receiver that
recorded the RSS of each packet received from the transmitter.
Figure 10 shows the RSS for each choice oftpcHalfDbm2, and
shows that the transmit power adjustment range is limited tojust 10
dB, which is usually insufficient for TPC. We therefore used an at-
tenuator to further decrease effective transmission powerby 25 dB,
as shown by the lower curve in Figure 10. There is a gap of 15 dB
between the minimum power of the original card and the maximum
power of the card with an attenuator. The transmit power cannot be
set to levels inside the gap. Nevertheless, we will show thateven
with limited transmit power control capabilities, our TPC scheme
is still very useful and reliable.

5.3.3 Effectiveness of the Silent TPC
The silent TPC scheme we proposed is heuristic because of the

unpredictability of signal strength. To test its validity,we tested
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our TPC scheme on an office floor inside the Microsoft wireless
LAN coverage. On the third floor, there are six access points using
802.11b. We chose 356 spots to uniformly cover the entire floor,
and carried a laptop with our customized wireless card (a Netgear
WG111U USB wireless card with the Windows Atheros driver) to
each of these spots. At each spot, the wireless card first passively
listens to all the channels used by the APs and records the RSS
of beacons from each AP. Based on the collected RSS values, we
adjusted the card’s transmit power using our TPC scheme.

We first evaluate how often a mobile station is able to adjust
its transmit power in a manner that improves privacy. We used
the RSS data collected at the 356 spots chosen uniformly on the
floor. Figure 11 shows the reverse cumulative distribution function
(reverse CDF) for the maximum RSS difference among APs at each
spot∆RSS. More than 73 percent of the spots have RSS difference
more than 20dB and can use TPC to improve privacy. Because the
spots we tested are uniformly distributed over the floor, this shows
that our TPC scheme is applicable in nearly three quarters ofthe
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space.
Then, we evaluated the effectiveness of our TPC at those eligi-

ble spots. We selected ten eligible spots at random. The mobile
station then adjusts its transmission power using our TPC algo-
rithm, then sends 100 probe packets to each AP that the mobile
station can hear. Instead of modifying the AP (which was serv-
ing many wireless users), we placed a promiscuous mobile station
near the AP, which records probe responses the AP sends to the
station. Table 1 shows the results of our experiment. AP1 is the
access point with the highest RSS, while AP2 has the lowest RSS,
i.e., ∆RSS = R1 − R2 ≥ 20 dB. The experiment result clearly
shows that before TPC, both AP1 and AP2 are in the mobile sta-
tion’s communication range, and after TPC, only AP1 can receive
signals from the mobile station. We also looked at overall statistics
on the number of APs in range for all 356 spots before and afterour
TPC scheme as shown in Figure 12. Before the TPC, 3% of spots
have only one AP in range, after the TPC, this percentage increases
to 36%. As for spots with only two APs in range, the percentage

increases from 11% before TPC to 23% after TPC. Localization
schemes are inaccurate in areas where one or two APs are within
range, and our scheme can increase the density of such areas from
14 percent to 59 percent.

5.3.4 Privacy Gain with Our Solutions
We first consider the strongest attackers: silent attackers. Such

attackers are passive sniffers that transmit no identifying signals,
so mobile stations are not aware of their existence. A user can-
not assume that its location is private even if the user reduces her
transmission power to allow only one AP to hear her. Neverthe-
less, even under this attacker model, the silent period can still be
effective in disassociating pseudonyms from the adversary. If the
adversary wants to locate mobile stations accurately at alltimes, he
must place silent attackers densely enough such that every mobile
station can be heard by at least three attackers, even when a node
uses the minimum transmission power. Our experimental results
show that the transmission radiusr is about 10 m at the minimum
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# probe responses
index ∆RSS(dB) AP1 AP2

before after before after
1 20.1 100 100 100 0
2 20.2 91 100 100 1
3 24.4 100 100 100 0
4 28.6 100 100 100 0
5 28.7 100 100 100 0
6 30.3 100 100 100 0
7 31.1 100 100 100 0
8 32.2 100 100 100 0
9 35.0 100 100 100 1
10 37.7 100 100 100 0

Table 1: Number of probe responses before and after TPC

transmit power. In order for a node to be heard by three attackers
at all times, the attacker densityρ must be such thatρ · πr2 ≥ 3,
ρ ≥ 0.095 sniffer/m2. This represents one sniffer per100 m2. By
comparison, the density of access points deployed in the building
that we carried out our experiments is one AP every500 m2, so a
silent attacker deployment costs five times as much as regular AP
deployment.

For active exposed attackers, network providers may dynami-
cally adjust their access points’ transmit power to interfere with
our silent TPC scheme. The users could potentially detect such at-
tackers by localizing access points using their RSS values.As users
move around, they are able to collect enough information to infer
AP location and detect the abnormal behavior. In-depth investiga-
tion on approaches against such attackers is future work.

With regard to passive exposed attackers, we present our empir-
ical measurements based on the aforementioned experimentson an
office building floor. We definemix areaof an AP to be the maxi-
mum area that is covered by just this AP. The larger the mix area,
the more difficult it is for attackers to determine the mobilenode’s
location since the number of mobile nodes in the area is larger. In
the office building setting, the distance between an AP and the next
closest AP is around 30 meters. We selected one of the six APs as
the target AP and studied the size of its mix areaafterTPC. Among
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356 spots in total that were chosen uniformly on the floor, there are
34 spots whose signals can be heard by only the target AP. Accord-
ing to the floor map, these 34 spots cover an area of approximately
352 m2. Users in the mix area of 352 m2 are indistinguishable for
attackers after TPC.

We compare this result to an adversary using RADAR [3] with
three APs. The location precision achieved in RADAR is what the
adversary could get before TPC. According to the data provided
in [3], the location precision is around 3 meters in terms of the me-
dian error distance, which corresponds to a circle with area28 m2

in which users are indistinguishable before TPC. Therefore, the mix
area is increased 12 times (=352/28) by applying TPC. Assuming
that mobile stations are uniformly distributed, the numberof can-
didates for a new pseudonym is 12 times greater when using TPC.
This results in an increased privacy entropy oflog2(12) = 3.7 in
addition to the entropy achieved by using a silent period. Ifthe
WLAN follows the mobility pattern of the bus system, the maxi-
mum privacy entropy that our system can provide is 11.1 bits,in-
cluding 7.4 bits from silent period and 3.7 bits from the transmit
power control; hence, a user can be indistinguishable from more
than a thousand users in the same coverage area.

For points outside of the protected area, location precision of
mobile stations covered by two or more APs varies among differ-
ent location schemes. We do not have detailed numerical analyses
about the location precision of points outside of a protected area.
However, location precision can be notably reduced if the number
of APs that the user communicates is reduced from three or more
to two or less [3].

6. OPERATIONAL MODEL
In this section, we present the privacy-enabling operations in pri-

vacy preserving systems, focusing first on mobile node operation,
then on service provider operation.

6.1 Mobile Nodes
One goal of our work is to allow each user to configure her pri-

vacy requirements as policies and to have user-friendly operations
that result in minimal disruption while satisfying the users’ privacy
policy. In this section, we present our design for mobile node oper-
ations that achieves this goal.



Though content privacy can be protected at the granularity of ap-
plications by encrypting the transmissions of a particularprivacy-
sensitive application, location privacy requires the participation of
the whole mobile system including all applications. Therefore, in
our design, a user configures the location privacy of her system us-
ing a Boolean flag (e.g., a checkbox) indicating whether the user
desires the location privacy or not. Figure 13 and Figure 14 show
such a user interface. During a silent period (Section 5.2),any
user-initiated communications are rejected and the user isalerted
that she cannot transmit to protect her privacy.

Figure 13: User Interface: Checkbox for Privacy Mode

Figure 14: User Interface: Alert Message

Our system implements the opportunistic silent period (Section 5.2)
and keeps track of the time period between communication ses-
sions. When that period exceeds the silent period, a new MAC ad-
dress is requested from the AP (as discussed in Section 5.1) using
a transmit power decodable only by the serving AP (Section 5.3).
A user may initiate communications before the end of the silent
period. We illustrate the system operations under this scenario in
Figure 15: our system first checks whether the user has configured
the mobile station to be in privacy mode. If not, the communication
session can start immediately; otherwise, the user is alerted to wait
until the end of the silent period, then new MAC is requested and
the user can start communicating. In this design, even non-privacy-
sensitive users obtain new MAC addresses opportunistically to in-
crease the entropy for privacy-sensitive users, while not disrupting
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Figure 15: Mobile Node Operating Model

the communications of non-privacy-sensitive users.

6.2 Service Providers
In Section 5.1, we described our MAC address selection scheme,

by which mobile nodes frequently change their MAC addresses. In
this scheme, access points need provide a DHCP-like servicefor
MAC address selection in the association phase.

Service providers are also responsible for providing the length of
silent period to their users and the corresponding degree ofprivacy
they should anticipate. Therefore, service providers needobtain the
mobility patterns of their users and choose the silent period based
on the methodology described in Section 5.2.

7. CONCLUDING REMARKS
In this paper, we have given a thorough treatment to the prob-

lem of location privacy in wireless LANs, where users’ location
information can be inferred from their wireless transmissions. Our
solutions can be easily applied to cellular networks as well, where
the base stations are able to locate cell phone users.

Our approach in achieving location privacy is to have mobile
stations frequently change their pseudonyms (e.g., MAC andIP
addresses), to pause opportunistically for a silent period, and to
perform silent TPC to reduce the location precision. We verified
the practicality of our schemes and evaluated their efficacyby us-
ing a combination of real-system experimentation, simulation, and
analysis. Given certain mobility pattern and wireless LAN cover-
age, our system can offer up to 11-bit entropy protection forloca-
tion privacy with little performance overhead. We also designed our
privacy-enabling operations on mobile nodes to be user-friendly
and incur minimal disruption to both privacy-sensitive andprivacy-
indifferent users.

A number of open problems still remain. It is inevitable that
privacy-enabled systems sacrifice service quality. Users in privacy
mode will have their communications delayed if they communicate
before a silent period ends. This is an inherent cost of location pri-
vacy. This is certainly disruptive to real-time applications such as
Voice-Over-IP or long communication sessions such as watching
video online. Nevertheless, many applications such as instant mes-
saging, e-mail, and web surfing can still be used in privacy-enabled
wireless systems. Our future work will investigate the tradeoff be-
tween privacy and service quality.

Our silent transmit power control scheme reduces the signal-to-
noise ratio received at the AP, possibly reducing the data rate to
ensure successful transmission. Our experiments sent all packets at



the lowest bit rate. Further study is needed on the interplayof our
silent transmit power control and wireless card rate control.
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