
PeerPressure: A Statistical Method for Automatic Misconfiguration Troubleshooting

Helen J. Wang
John Platt
Yu Chen

Ruyun Zhang
Yi-Min Wang

Microsoft Research

November 2003

Technical Report
MSR-TR-2003-80

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

PeerPressure: A Statistical Method for Automatic
Misconfiguration Troubleshooting

Helen J. Wang, John Platt, Yu Chen, Ruyun Zhang, Yi-Min Wang
Microsoft Research

Abstract— Technical support contributes 17% of the
total cost of ownership of today’s desktop PCs [20]. An
important element of technical support is troubleshooting
misconfigured applications. Misconfiguration troubleshoot-
ing is particularly challenging, because configuration in-
formation is shared and altered by multiple applications.

In this paper, we present a novel troubleshooting al-
gorithm, PeerPressure, which uses statistics from a set of
sample machines to diagnose the root-cause misconfigura-
tions on a sick machine. This is in contrast with methods
that require manual identification on a healthy machine
for diagnosing misconfigurations [24]. The elimination of
this manual operation makes a significant step towards
automated misconfiguration troubleshooting.

In PeerPressure, we introduce a ranking metric for mis-
configuration candidates. This metric is based on empirical
Bayesian estimation . We have developed a PeerPressure
troubleshooting system and used a database of 87 machine
configuration snapshots to evaluate its performance. With
20 real-world troubleshooting cases, PeerPressure can
effectively pinpoint the root-cause misconfigurations for 12
of them. For the remaining ones, PeerPressure significantly
narrows down the number of root-cause candidates by
three orders of magnitude.

I. I NTRODUCTION

Today’s desktop PCs have not only brought to their
users an enormous and ever-increasing number of fea-
tures and services, but also an increasing amount of trou-
bleshooting cost and productivity losses. Studies [18][20]
have shown that technical support contributes 17% of
the total cost of ownership of today’s desktop PCs [20].
A large amount of technical support time is spent on
troubleshooting.

Many troubleshooting cases are due to misconfigura-
tions. This misconfiguration is often caused by data that
is in shared persistent stores such as Windows registry
and Unix resource files. Such stores may serve many
purposes. They include system-wide resources that are
naturally shared by all applications (e.g., the file system).
They allow applications installed at different times to
discover and integrate with each other. They enable

users to customize default handlers or appearances of
existing applications. They allow individual applications
to register with system services to reuse base functional-
ities. They permit individual components to register with
host applications that provide an extensibility mechanism
(e.g., toolbars in browsers).

Maintaining healthy configurations of a computer plat-
form with a large installed base and numerous third-party
software packages has been recognized as a daunting
task [13]. The considerable number of possible con-
figurations and the difficulty in specifying the “golden
state” [21], the perfect configuration, have made the
problem appear to be intractable.

In this paper, we address the problem of misconfigu-
ration troubleshooting. There are two essential goals in
designing such a troubleshooting system:

1) Troubleshooting effectiveness: the system should
effectively identify asmallset of sick configuration
candidates with a short response time;

2) Automation: the system should minimize the num-
ber of manual steps and the number of users
involved.

To diagnose misconfigurations of an application on a
sick machine, it is natural to find a healthy machine to
compare against [24]. Then, the configurations that differ
between the healthy and the sick are misconfiguration
suspects. However, it is difficult to identify a healthy
machineautomatically. Involving the user in confirming
the correct application behavior seems unavoidable1.

We can avoid extensive manual identification work by
observing thatthe golden state is in the mass. In other
words, an application functions correctly onmost of
machines, therefore we can use the statistics from a large
enough sample set as the ”statistical golden state”. The
statistical golden state can be combined with Bayesian
statistics to identify anomalous misconfigurations on sick
machines. Then, the misconfigurations can be corrected

1Different users may even have different views on what the correct
application behaviors are.

2

by comforming to the majority of the samples. We name
this statistical troubleshooting methodPeerPressure.

We have prototyped a PeerPressure troubleshooting
system which carries out the PeerPressure algorithm
using samples from a database of 87 real-usage machine
configuration snapshots. And we have evaluated the sys-
tem with 20 real-world troubleshooting cases. PeerPres-
sure can effectively pinpoint the root-cause misconfigu-
rations for 12 of the cases. For the remaining ones, Peer-
Pressure significantly narrows down the number of root-
cause candidates by three orders of magnitude. These
results have demonstrated PeerPressure as a promising
troubleshooting method.

To simplify our presentation, we will focus our discus-
sion on a particular type of important configuration data,
the Windows Registry [19], which provides hierarchical
persistent storage for named, typed entries. The princi-
ples and techniques are directly applicable to other types
of configuration stores such as files and other platforms
such as Unix.

We will first give an overview on the architecture and
operations of our PeerPressure troubleshooting system
in Section II. In Section III, we detail the formulation
and the analysis of the PeerPressure algorithm. We
discuss our prototype implementation in Section IV.
Then, we present our empirical results in Section V. We
compare and constrast our work with the related work
in Section VI, address the future work in Section VII,
and finally conclude in Section VIII.

II. PEERPRESSURETROUBLESHOOTINGSYSTEM

ARCHITECTURE

Registry Entry Suspects

0HKLM\System\Setup\...

OnHKLM\Software\Msft\...

nullHKCU\%\Software\...

DataEntry

PeerPressure

Search
& Fetch

Statistical
Analyzer

Canonicalizer
Peer-to-Peer

Troubleshooting
Community

GeneBank

Troubleshooting Result

0.2HKLM\System\Setup\...

0.6HKLM\Software\Msft\...

0.003HKCU\%\Software\...

Prob.Entry

App
Tracer

Run the
faulty app

Fig. 1. PeerPressure Troubleshooting System Architecture and its
Operations

Figure 1 illustrates the architecture and the opera-
tions of a PeerPressure troubleshooting system. A trou-
bleshooting user first expresses the symptom of the sick
machine through the use of “App Tracer”. “App Tracer”
records the registry entries that are used as input to
the failed application execution. We term these mis-
configuration candidatessuspects. Then, the user feeds
the suspects into the PeerPressure troubleshooter which
has three modules: a canonicalizer, a searcher/fetcher,
and a statistical analyzer. The canonicalizer turns any
user- or machine-specific entries into acanonicalized
form. For example, user names and machine names are
all replaced with constant strings “USERNAME” and
“MACHINENAME”, respectively. Then, PeerPressure
searches for a sample set of machines that run the
same application. The search can be performed over a
“GeneBank” database that consists of a large number of
machine configuration snapshots or through a peer-to-
peer troubleshooting community. (In this paper, we base
our discussions on the GeneBank database approach. For
the peer-to-peer approach, we refer interested readers
to [23].) Next, PeerPressure fetches the respective values
of the canonicalized suspects from the sample set ma-
chines. The statistical analyzer then performs statistical
analysis, calculates the probability for each suspect to
be sick, and outputs a ranking report based on the sick
probability. Finally, PeerPressure conducts trial-and-error
fixing, by stepping down the ranking report and replacing
the possibly sick value with the most popular value from
the sample set. The fixing step interacts with the user to
determine whether the sickness is cured. This last step is
not shown in the figure; and we will not further address
it for the rest of the paper.

As careful readers can see, there are still some manual
steps involved. The first one is that the user must run the
sick application to record the suspects. The second one
is that the user is involved in determining whether the
sickness is cured for the last step. We argue that these
manual steps are difficult to eliminate because only the
user can recognize the sickness, and therefore has to be
in the loop for those steps. Nonetheless, these manual
steps only involve the troubleshooting user, and not any
second parties.

III. T HE PEERPRESSUREALGORITHM

In this section, we first illustrate the intuition and ob-
jectives for calculating the probability of a suspect being
sick. Then, we derive the sick probability formula. At
last, through our analysis, we show that our formulation
achieves the objectives.

3

Name Suspect Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

e1 .jpg/contentType image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg
e2 .htc/contentType not exist text/x-comp text/x-comp text/x-comp text/x-comp text/x-comp
e3 url-visited yahoo hotmail nytimes SFGate google friendster

TABLE II

INTUITION BEHIND PEERPRESSURESICK PROBABILITY FORMULATION

N Sample set size
t Suspect set size
i The index for the suspect (from 1

to t)
V The value of a suspect
c The number of possible sample

values for a suspect
m The number of samples that match

the suspect value
P(S) The prior probability that a suspect

is sick
P(H) 1−P(S)
P(S|V) The probability that a suspect is

sick given its value
P(V|S) The probability that a sick suspect

has valueVi

TABLE I

NOTATION

A. Intuition and Objectives

We use an example to illustrate the intuition and
objectives of formulating the sick probability calculation
for each suspect. Table II shows three suspects (e1,e2,e3)
and their respective values from a sample set of machine
configuration snapshots from the GeneBank. A cursory
examination of the sample set suggests thate1 is proba-
bly healthy ande2 is more likely to be sick thane3. The
suspecte2 is more likely to be sick because all samples
have the same value, while the suspect value is different.

In fact, we have seen two types of state in canonical-
ized configuration entries: (I) application configuration
states such ase1 and e2, (II) operational states such
as timestamps, usage counts, caches, seeds for random
number generators, window positions, and MRU (Most
Recently Used)-related information. For troubleshooting
configuration failures, we are mostly concerned with type
I entries. Type II entries constitute the “natural biological
diversity” among machines and are less likely to be
root causes of configuration failures. In our example,e3

belongs to category II.
Therefore, the objective for the sick probability for-

mulation is not only to capture the anomaly from the
golden mass, but also to weed out the operational state
false positives.

B. Formulation

Table I summarizes our notation.
To estimate whether a suspect is sick, we need to

estimateP(S|V), the probability that a suspect is sick
given its valueV. We estimate this probability for all
suspects independently. In the derivation below, let us
consider only one suspecti: all parameters are implicitly
indexed byi.

According to Bayes rule [10], we have:

P(S|V) =
P(V|S)P(S)

P(V|S)P(S)+P(V|H)P(H)
(1)

We need to estimate each of the terms on the right-
hand-side of Equation (1). We first assume that there is
only one sick entry amongst the suspects (leaving the
multiple sick entry case for future work). Before we
observe any values, the prior probabilities of a suspect
being sick and healthy are

P(S) =
1
t

P(H) = 1− 1
t

wheret is the number of possible suspects.
We do not have an extensive training set of sick

suspects. Therefore, we make an assumption that a sick
entry has all possible values with equal probability:

P(V|S) =
1
c

wherec is the cardinality of the suspect entry, the total
number of values that entry can take. Note that we
computec by counting the number of unique values for
that entry in the sample set (including “no entry”, if that
occurs), then adding one to account for all entries that
do not occur in the sample set.

For P(V|H), we leverage the observation from a sam-
ple set of machine configurations from the GeneBank.

4

Let m denote the number of samples matchingV, and
N, the size of the sample set. If we assume thatP(V|H)
is estimated via maximum likelihood, we get the estimate

P(V|H) =
m
N

(2)

P(S|V) =
N

N+cm(t−1)
(3)

However, maximum likelihood has undesirable proper-
ties when the amount of sample data is limited. For
example, when there are no matching values toV in the
sample set, thenm= 0 andP(S|V) = 1, which expresses
complete certainty that is unjustified. For example, in
Table II, maximum likelihood would claim thate2 and
e3 are both sick with complete and equal confidence.

Bayesian estimation [10] of probabilities is more ap-
propriate for the situation of small sample sizeN, such as
our GeneBank scenario. Bayesian estimation uses a prior
over P(V|H), before the sample set is examined. The
estimation then uses the posterior estimate ofP(V|H)
after the sample set is examined. Therefore,P(V|H) is
never 0 or 1.

We first assume thatP(V|H) is multinomial over all
possible valuesV. The multinomial has parametersp j .
Eachp j is the probability that the valueVj is used. The
p j sum to 1.

Now, the p j have prior and posterior values which
we draw from a Dirichlet distribution [10]. Dirichlet
distributions are a natural prior for multinomials, because
they areconjugateto multinomials. That is, combining
observations from a multinomial with a prior Dirichlet
yields a posterior Dirichlet. Thus, the Dirichlet distribu-
tion is mathematically convenient.

Dirichlet distributions are completely characterized by
a count vectorn j , which corresponds to the number of
possibe counts for each valueVj . These counts do not
need to reflect real observations: as we’ll see below, we
can count phantom data, also.

To perform Bayesian estimation ofP(V|H), we start
with a prior set of countsn′j that reflect our prior
belief about the likelihood of various valuesVj . We
then observe ourN samples of values for this suspect,
collecting countsmj for the different values. The mean
of the posterior Dirichlet yields the posterior estimate
P(Vj |H) [10]

P(Vj |H) =
mj +n′j

N+∑ j n
′
j

(4)

We only need to estimate theP(Vj |H) for the value
that actually occurs in the suspect entry. Therefore, we

can replacemj with m, the number of samples that
matches the suspect entry. Furthermore, we can assume
that all valuesVj have the samea priori probability
(before looking at the sample set). Thus,n′j can be
replaced with some valuen and the sum∑ j n

′
j can be

replaced withcn. Combining these assumptions with
Equations (4) and (1) yields

P(S|V) =
N+cn

N+cnt+cm(t−1)
(5)

The parametern is proportional to the number of ob-
servations that are required to overwhelm the prior and
to move the estimatedP(V|H) probabilities away from
E(p j) = 1/c. In other words, the higher then is, the less
confidence we have for the knowledge obtained from
the GeneBank.n indicates the strength of the prior. A
higher n leads to a stronger prior, which requires more
evidence (observationsN) to change the posterior. Notice
that Equation (5) never predicts a sick probability of 0
or 1, even ifm is 0 or N.

We choosen = 1 for our prior, which is equivalent to
a flat prior: all multinomial valuesp j are equally likely
a priori. This is known as an “uninformative” prior.

C. Asymptotic analysis

To show that our Bayesian probability estimates in
Equation (5) produce sensible results, we illustrate the
asymptotic behavior of the estimates in various cases.

Given a suspect set of sizet, there are four variables
that affect the sick probability ranking for the suspects,
namely, the number of matchesm, the Dirichlet prior
strengthn, the sample set sizeN, and the cardinalityc.
Please note thatN can vary among the suspects because
of the canonicalized entries. For example, for a user-
specific canonicalized entry, the number of samples is
the number of users rather than the number of machines
in the GeneBank; and a machine can have multiple users.
Now, we analyze on how each of these parameters affects
the sick probability and whether the trend agrees with
our objectives (see Section III-A).

Fixing N, c, and n, as the number of matchesm
increases, the sick probability decreases, as desired:

lim
m→∞

P(S|V) = 0

Fixing N, c, andm, as the prior strengthn increases,
we have

lim
n→∞

P(S|V) =
1
t

= P(S)

This means that conducting a statistical analysis over
such a sample set is useless in this case. This makes

5

sense, because whenn reaches infinity, the prior has
infinite strength, and therefore observations offer no
additional knowledge.

For understanding the influence ofN, we assume that
as N grows, m also grows asf N, for some fractionf
between 0 and 1. Therefore,

lim
N→∞

P(S|V) =
1

1+c f(t−1)

Notice in the infinite data limit, the prior is completely
“washed out”, and the higherc, f , or t is, the less likely
an entry is to be sick. We also have, forN = m= 0,

lim
N→0

P(S|V) =
1
t

= P(S)

This is also accurate. Since whenN = 0, we are unable
to make any observations. So, the suspect set is the only
factor that determines the sick probability.

To illustrate the impact of the cardinalityc, we first
note thatc→∞ impliesN→∞. So, applying the analysis
for N above, we have

lim
c→∞,N→∞

P(S|V) = lim
c→∞

1
1+c f(t−1)

= 0

This is desirable because whenc is large, it represents
a higher level of “biological diversity”, and therefore,
being different is less likely due to some sickness.

Now, we examine the case of operational state where
m= 0 most likely, we have

P(S|V) =
N+cn
N+ tcn

Fixing N, the sick probability decreases with increased
cardinality when there are no matches because the
derivative ofP(S|V) with respective toc is negative when
t > 1; and whent = 1, P(S|V) = 1 as desired. Therefore,
for our example in Table II, Formula 5 will ranke2 sicker
thane3, as desired.

In summary, our analysis demonstrates that Formula 5
achieves our objective of capturing anomalies and weed-
ing out operational state false positives. Later, in Sec-
tion V, we further demonstrate through real-world trou-
bleshooting cases that our PeerPressure algorithm is
indeed effective.

IV. I MPLEMENTATION OF PEERPRESSURE

PROTOTYPE

We have prototyped the PeerPressure troubleshoot-
ing system as shown in Figure 1. We have created
a GeneBank database using Microsoft SQL Server
2000 [7], which now contains real-usage registry snap-
shots from 87 Windows XP desktop PCs. We have

Response Time Vs. Number of Suspects

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 1000 2000 3000 4000 5000 6000

of Suspects

R
es

p
o

n
se

 T
im

e
(S

ec
o

n
d

)

Fig. 2. Response Time Vs. Number of Suspects for 20 real-world
troubleshooting cases.

implemented the PeerPressure troubleshooter in C# [16],
which issues queries to the GeneBank to fetch the sample
values and carries out the sick probability calculation
(Section III). We use a set of heuristics for canoni-
calizating user-specific, machine-specific configuration
entries in the suspect set. One obstacle we encountered
during our prototyping is that values for a specific
registry entry across different machines are the same
but with different representations. For example, 1, “#1”,
“1” all represent the same value. Nonetheless, the first
one is an integer and the latter two are different string
representations. Such inconsistent representations of the
same data affect all parameter values needed by the sick
probability calculation. We use heuristics to unify the
different representations of the same data value. We call
this procedure “data sanitization” for future reference.
For example, one such heuristic is to find all entries that
have more than one types. (Registry entries contain a
“type” field). For a registry entry that have both numeric-
typed and string-typed values among different registry
snapshots, all string values are converted into numbers.

Our PeerPressure troubleshooter, although unopti-
mized in its present form, is already fast. In average,
it takes less than45 seconds to return a root-cause
ranking report for suspect sets of thousands of entries.
The response time generally grows with the number of
suspects because we issue one query per suspect entry.
Figure 2 shows the relationship between the response
time and the number of suspects for the 20 troubleshoot-
ing cases under study . With aggressive database query
batching, we anticipate that the response time can be
greatly improved.

6

Maximum registry size 333,193
Minimum registry size 77,517
Average registry size 198,376
Median registry size 198,608
Distinct canonicalized registry entries in GeneBank1,476,665
Common canonicalized registry entries 43,913
Distinct entries data-sanitized 1,820,706

TABLE III

REGISTRY CHARACTERISTICS

CDF of the Registry Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50000 100000 150000 200000 250000 300000 350000

Number of Entries

C
D

F

Fig. 3. Registry Size Distribution

V. TROUBLESHOOTINGEFFECTIVENESS OF THE

PEERPRESSURETROUBLESHOOTER

In this section, we evaluate the troubleshooting effec-
tiveness of the PeerPressure prototype on the 20 real-
world troubleshooting cases. We first take a peek of the
registry characteristics based on the registry snapshots
from our GeneBank repository, then we present and
analyze our troubleshooting results.

A. A Peek of Registry Characteristics

Windows registry contains most of the configuration
data for a desktop PC. Table III summarizes some
registry characteristics manifested from the GeneBank.
The sheer volume of configuration data is daunting.
Figure 3 shows the registry size distribution among the
registry snapshots in the GeneBank. Registry size ranges
from 77,517 to 333,193 entries. The median is 198,608
entires. The total number of distinct canonicalized en-
tries in the GeneBank is as large as 1,476,665, which
represents the total number of “genes” contained in the
small world of 87 machines. Across all the machines,
there are 43,913 common canonicalized entries. With our
canonicalization heuristics, an average of 68,126 entries
from each registry snapshot are canonicalized. With our
data sanitization (see Section IV) heuristics, we have
sanitized as many as 1,820,706 entries in the GeneBank.

Cardinality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14

Cardinality

C
D

F

Fig. 4. Cardinality Distribution

Cardinality is an essential parameter of our PeerPres-
sure formulation (Section III). Because the GeneBank
may not contain all possible “genes” (entry values), we
count all values that are unknown to the GeneBank as
a single valueunknown. This effectively increments the
observed cardinality from the GeneBank by one. There-
fore, any entry from the GeneBank has a cardinality of
at least 2; and entries that do not exist in the GeneBank
have a cardinality of 1. Also, some entries may not exist
on some sample machines. For such cases, these entries
have the valueno entry. Figure 4 shows the distribution
of the cardinality for all canonicalized entries in the
GeneBank. 87% of the registry entries have a cardinality
of 2, 94% no more than 3, and 97% no more than 4.

B. PeerPressure Performance with Real-World Trou-
bleshooting Cases

Now, we present our empirical troubleshooting results
for PeerPressure.

We use the 20 cases listed in Table IV for our exper-
iments. They were all real-world failures that troubled
some users. And we have the knowledge of their root-
cause misconfiguration a priori. Therefore, we use the
ranking of the root-cause entry as our evaluation met-
ric. To allow parameterized experiments, we reproduced
these failures on a real-usage desktop using configuration
user interface (e.g., Control Panel applets) to inject the
failures whenever possible, and using direct editing of
the Registry for the remaining cases. Then, we used “App
Tracer” to get the suspects (see Section II). Finally, we
ran PeerPressure to produce the ranking reports.

1) Root Cause Ranking: For each troubleshooting
case, Table V shows the ranking of the root-cause
entry, the number of ties, the number of suspects, the
cardinality of the root-cause entry, the number of samples
matching the suspect’s root-cause entry value, and the

7

ID Name Description

1 Systems Restore No available checkpoints are displayed because the calendar control object cannot be started due to
a missing Registry entry.

2 JPG Right-clicking on a JPG image and choosing the Send To→ Mail Recipient option no longer offer
the resize option dialog box due to a missing Registry entry.

3 Outlook User is always asked upon exiting Outlook whether she wants to permanently delete all emails in
the Deleted Items folder, due to a hard-to-find setting.

4 IE Passwords Internet Explorer (IE) browser no longer offers to automatically save passwords; the option to re-
enable the feature is difficult to find.

5 Media Player Windows Media Player “Open Url” function would fail if the EnableAutodial Registry entry is
changed from 0 to 1 on a corporate desktop.

6 IM MSN Instant Messenger (IM) would significantly slow down if the firewall client is disabled on a
corporate desktop.

7 IE Proxy IE on a machine with a corporate proxy setting would fail when the machine is connected to a home
network.

8 IE Offline IE “Work Offline” option may be automatically turned on without user knowledge; user would then
be presented with a cached offline page instead of the default start page when launching IE.

9 Taskbar IE windows would be unexpectedly grouped under the Windows Explorer taskbar group, due to the
addition of a Registry entry.

10 Network Connections Control Panel→ Network Connections showed nothing, due to a missing Registry key.
11 Folder Double-Clicking Double-clicking any folder in the right pane of Windows Explorer would incorrectly bring up the

“Search Results” window.
12 Outlook Express Microsoft Outlook could not be started because the Outlook Express installation appeared to be

missing, due to a missing Registry key.
13 Cannot Start Executables Double-clicking any EXE file would not launch the application.
14 Shortcut Double-clicking any shortcut would not launch the application.
15 IE Menu Bar IE menu bar disappeared due to a corrupted Registry key name.
16 IE Favorites IE used the “unknown file type icon” for some of the links in the Favorites.
17 Sound Problem Warning sound was missing when an invalid command was typed into Start-¿Run.
18 IE New Window Right-clicking a link inside IE and choosing “Open in New Window” would show nothing.
19 Yahoo Toolbar Yahoo Companion per-user installation affects all users.
20 Media Player Windows Media Player ”Open URL” function would fail if the EnableAutodial Registry entry is

changed from 0 to 1 on a corporate desktop.

TABLE IV

20 REAL-WORLD TROUBLESHOOTINGCASESUSED FORPEERPRESSUREEVALUATION

number of samples. The non-zero values for the “# of
Matches” column indicate that the GeneBank contains
registry snapshots with the same sickness. Nonetheless,
our assumption that the golden state is in the mass is still
correct, since there are indeed only very small percentage
of the sick machines in the GeneBank.

As we can see from the table, the number of suspects
is large: ranging from 8 to 26,308, with a median of
1,171, and an average of 2,506. Therefore, PeerPressure
is an indispensible step of troubleshooting since sieving
through these large suspect sets for root-cause entries is
like finding a needle in a haystack.

For 12 out of the 20 cases, PeerPressure ranks the
root-cause entry as number one without any ties. For the
remaining cases, PeerPressure narrows down the root-
cause candidates in the suspect set by three orders of
magnitude for most cases. There is only one case, case
19, which our GeneBank cannot help because only two
machines in the GeneBank have the sick application and
they happen to have the same sick values as well.

2) The Causes of False Positives: Now, we give an
analysis on the causes of false positives. The sick prob-
ability metric essentially ranks on the conformance level
of a suspect entry to the samples from the GeneBank.
The more conforming a suspect is in comparing with
other suspects, the larger its rank number is (i.e., the
more healthy the suspect is).

One source of false positives is due to the nature of
the root-cause entry. If the root-cause entry has a large
cardinality, it likely receives a larger rank number based
on our sick probability formula in Section III. Case 20
falls into this category. The root-cause entry for Case 20
has a high cardinality of 65 while the rest of the cases
have low cardinalities (Table V).

The nature of the root-cause entry is only one factor.
The ranking also depends on how the root-cause entry
relates to other entries in the suspect set. A highly
customized machine likely produces more noise, since
the unique customizations can be even less conforming
than a sick entry value. Case 11, 12, and 16 fall in this

8

category.
Lastly, GeneBank is not pristine. The non-zero values

in Column “# of Matches” in Table IV indicates the
number of machines in the GeneBank that have the same
sickness. This affected the ranking of Case 2, 6, and 10.

3) The Impact of the Sample Set Size: It is intuitive
that the larger the sample set is, and better the root-cause
ranking will be. However, our evaluation results indicate
that this is notentirely true.

We have experimented with sample sets of size 5, 10,
20, 30, 50, and 87. For each sample set sizeN, we pick
N samples from the GeneBank randomly for 5 times,
then we average the root-cause ranking of the random
sample sets. Table VI shows root-cause ranking trend for
various sample set sizes. The average number of ties for
each sample set size is indicated in the paretheses. For
the first three cases in the table, the root-cause ranking
is perfect regardless of the sample set size. One reason
is that there is a strong conformance of values in the
GeneBank for the root-cause entry (e.g., all samples take
the same value). And such strong conformance manifests
in any subset of the GeneBank samples. In addition,
no other suspects become noise when the sample set is
small.

The cases belonging to the middle portion of Table VI
do not show a clear trend as a function of the sample set
size. For Case 20, the root-cause entry has a scattered
value distribution and a high cardinality of 65. So,
drawing any subset of the samples reflects the same value
diversity, and therefore the ranking does not improve
with larger sample set. For the other cases, although there
is strong comformance in their value distributions, their
rankings are affected by other entries in the suspect sets.

For the third category of the cases in the bottom
part of Table VI, the root-cause ranking improves with
larger sample set. For the first 4 cases, they have near-
perfect root-cause ranking. Nonetheless, the number of
ties decreases quickly as the sample set size increases.
For most of the cases belonging to this category, we can
see that the GeneBank has polluted entries according
to the “# of Matches” column in Table V. In this
situation, enlarging the sample set reduces the impact
of the polluted entries and therefore contributes to the
decreasing trend of the rankings.

4) Sick Machine Sensitivity Evaluation: So far, we
have only presented results from one sick machine’s
vantage point. In fact, the troubleshooting results do
depend on how uniquely the sick machine is customized
and configured. To understand how our results vary with
different sick machines, we have picked three real-usage

Cases Machine 1 Machine 2 Machine 3

2. JPG 16 (0) / 1779 32 (2) / 1272 14 (0) / 1272
5. Media Player 1 (0) / 182 1(0) / 566 1 (0) / 1657
6. IM 1(0) / 2789 12(0) / 1777 12 (0) / 2017
14. ShortCut 1(0) / 105 1(0) / 84 1 (0) / 64
16. IE Favoriates 1 (0) / 302 2(0) / 3209 1 (3) / 1908

TABLE VII

SICK MACHINE SENSITIVITY EVALUATION . EACH ENTRY HAS

THE FORMAT OFROOTCAUSERANKING (NUMBEROFTIES) /

NUMBEROFSUSPECTS.

machines that belong to different users, and evaluated the
sick machine sensitivity with 5 cases. Table VII shows
that the troubleshooting results on these sick machines
are mostly consistent. In some cases, such as Case 6,
there is this phenomenon that a larger suspect set leads
to better ranking rather than introducing more noise as
one may expect. This is simply because the larger suspect
set on one machine is not necessarily a superset of the
smaller suspect set on the other machine.

VI. RELATED WORK

There are two general approachs in system manage-
ment: the white-box [4][3][6][15][11][22] and the black-
box approach [24]. In the former, languages and tools are
designed to allow developers or system administrators
to specify ”rules” of proper system behavior and con-
figurations for monitoring, and ”actions” to correct any
detected deviation. The biggest challenge for the white-
box approach is in the accuracy and the completeness of
the rule specification.

Strider [24] exemplifies the black-box approach for
misconfiguration troubleshooting: problems are diag-
nosed and corrected in the absence of specification of
correct behavior. In Strider, the troubleshooting user first
identifies a healthy machine on which the application
functions correctly. This can be done by finding a healthy
configuration snapshot in the past on the same machine
or by finding a different healthy machine. Next, Strider
performs configuration state differencing between the
sick and the healthy, the difference is then further nar-
rowed down by intersecting with suspects obtained from
“App Tracer” (Section II). Finally, Strider uses noise-
filtering techniques to further narrow down the root-
cause candidate set. Noise-filtering uses a metric called
Inverse Change Frequencywhich looks at the change
frequency of a registry entry. The more frequent an entry
changes, the more likely it is a piece of operational state
which is unlikely a root cause.

PeerPressure also takes the general black-box ap-
proach. PeerPressure differs from Strider in the following

9

Case Rank Ties # of Suspects Cardinality # of Matches # of Samples
1. System Restore 1 0 1350 3 1 87
2. JPG 16 0 1779 3 5 87
3. Outlook 1 0 37 4 7 566
4. IE Passwords 1 0 135 4 1 566
5. Media Player 1 0 182 6 1 566
6. IM 12 0 1777 4 8 87
7. IE Proxy 1 0 1171 16 0 566
8. IE Offline 1 0 1230 4 1 566
9. Taskbar 1 0 64 4 2 566
10. Network Connections 2 0 354 2 1 87
11. Folder Double-Click 2 1 26308 2 0 87
12. Outlook Express 3 0 482 2 0 87
13. Cannot Start Executables 1 0 237 2 0 87
14. ShortCut 1 0 105 2 0 87
15. IE Menu bar 1 2 3590 2 0 87
16. IE Favoriates 2 0 3209 3 0 87
17. Sound Problem 1 0 8 1 0 566
18. IE New Window 1 0 853 2 0 87
19. Yahoo Tool bar n/a
20. MediaPlayer in IE 9 0 5483 65 0 566

TABLE V

ROOT-CAUSE RANKING RESULTS

Case 5 Samples (Ties) 10 (Ties) 20 (Ties) 30 (Ties) 50 (Ties) 87 (Ties) # of matches

Perfect ranking regardless of
the sample set size
5. Media Player 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1
14. Invalid ShortCut 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0
17. Sound Problem 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0

Ranking Trend not solely dependent
on the sample set size
10. Network Connections 1.6 (1) 1.4 (0.6) 2 (0.2) 1.4 (0.2) 1.4 (0) 2 (0) 1
20. Media Player in IE 6.2 (0.2) 6.2 (0) 8 (0) 11 (0) 11.2 (0) 9 (0) 0
2. JPG 8.4 (0.2) 13.4 (0.4) 14.6 (0.2) 13 (0.2) 14.2 (0) 16 (0) 5
6. IM 15.6 (1.6) 104 (0.2) 20 (0) 15.4 (0) 14.6 (0) 8 (0) 8

Larger Sample Set improves ranking
8. IE Offline 1 (0.2) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1
13. Cannot Start Executables 1 (0.4) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0
1. System Restore 1 (0) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0) 1 (0) 1
9. Taskbar 1.6 (5) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 2
3. Outlook 2.2 (0.4) 1.4 (0.8) 1.6 (0.8) 1.4 (0.8) 1 (0) 1 (0) 7
4. IE Passwords 5.8 (8.2) 3.2 (2.4) 3.2 (2.4) 1 (0) 1 (0) 1 (0) 1
7. IE Proxy 3.4 (1.8) 2.2 (0.2) 2 (0.8) 3(3.2) 1(0) 1 (0) 0
15. IE No Menu Bar 6.4 (10.8) 3.2 (3.6) 2.2 (2.6) 1.6 (2.4) 1 (2) 1 (2) 0
16. IE Favorites 18.2 (1) 3.8 (1.8) 3.2 (0.8) 3.8 (0) 2.8 (0) 2 (0) 0
18. IE New Window 7 (0.8) 3.8 (0.8) 2.2 (0) 1.6 (0) 1 (0) 1 (0) 0

TABLE VI

IMPACT OF THESAMPLE SET SIZE

10

ways:
1) With statistical analysis, PeerPressure eliminates

the manual step of the troubleshooting user iden-
tifying a healthy machine. This also eliminates
the involvement of any second parties in cross-
machine troubleshooting scenarios.

2) PeerPressure generalizes the state-differencing and
noise-filtering steps with one step of statistical
analysis.

3) Strider uses order ranking which means that the
final ordering of suspects are based on the se-
quence of their usage during application execution.
The later the root-cause entry appears during the
execution, the more false positives there are. In
contrast, PeerPressure is not sensitive to the se-
quence of suspect entry usage. Nonetheless, the
larger the suspect set is, the more likely there are
entries which are more unique than the root-cause
entry.

4) On the measure of root-cause ranking, PeerPres-
sure’s yields better ranking for most of the cases.

Another interesting work that also takes the black-
box approach is that of Aguilera et al. [1]. They address
the problem of black-box performance debugging for
distributed systems. They developed and compared two
algorithms for inferring the dominant causal paths. One
uses the timing information from RPC messages. The
other uses signal processing techniques. The significant
finding of this work is that traces gathered with little
or no knowledge of application design or message se-
mantics are sufficient to make useful attributions of the
sources of system latency. Therefore, their techniques are
applicable to almost any distributed systems.

In a recent position paper, Redstone et al. [17] de-
scribed a vision of an automated problem diagnosis sys-
tem that automatically captures aspects of a computer’s
state, behavior, and symptoms necessary to characterize
the problem, and matches such information against prob-
lem reports stored in a structured database. Redstone’s
work addresses the troubles withknown root causes.
PeerPressure complements this work with the techniques
that identify the root causes of unsolved troubleshooting
cases.

The concept of using statistical techniques for problem
identification has emerged in several areas in recent
years. One way of using statistics is to build a statistical
model of healthy machines, and compare a sick machine
against the statistical model. PeerPressure falls into this
category and is the first to apply Bayesian techniques to
the problem of misconfiguration troubleshooting. Other

related work in this category [8][12][9] first use statistics
to build a correct behavior model which is used to detect
anomalies. Then, the number of false positives is min-
imized as much as possible. Engler et al. [8] use static
analysis on the source code to derive likely invariants
based on the statistics on some pre-defined rule templates
(such as a call tof unction a() must be paired with a call
to f unction b()). Then, potential bugs are recognized
as deviant behaviors from these invariants. Engler et al.
have discovered hundreds of bugs in Linux and FreeBSD
to date. Later, they further improved the false positive
rate in [12]. Forrest et al.’s seminal work on host-based
intrusion detection system [9] builds a normal-behaving
system call sequence database by observing system calls
for various processes. Then, the intrusions with abnormal
system call sequence can be caught. Apap et al. [2]
designed a host-based intrusion detection system that
builds a model of normal Registry behavior through
training and showed that anomaly detection against the
model can identify malicious activities with relatively
high accuracy and low false positive rate.

Another way of using statistics is to correlate the
observed service failure with root-cause software com-
ponent or source code for the purpose of debugging.
Liblit et al. [14] uses statistical sampling combined with
a number of elimination heuristics to analyze program
behaviors. Program failures, such as crashes, are corre-
lated with specific features or even specific variables in
a program.

The PinPoint root-cause analysis framework [5] is
a a debugger for component based systems. PinPoint
identifies individual faulty components that causes ser-
vice failures in a distributed system. PinPoint uses
data clustering analysis on a large number of multi-tier
request-response traces that are tagged with perceived
success/failure status. The clustering determines the root-
cause subset component(s) for the service failures.

VII. F UTURE WORK

We have much future work ahead of us. In this
paper, we assume that there is only one sick entry
among the suspects. However, it is possible that multiple
entries contribute to the sickness collectively. We call
the process of identifying multiple root-cause entries,
multi-genetroubleshooting. Determining the number of
genes involved in a troubleshooting case as well as
formulating the multi-gene sick probability are non-
trivial tasks because the sick probability of each entry
is no longer independent of one another.

11

Another open question is GeneBank maintenance. The
GeneBank currently has a one-time machine configu-
ration snapshots from 87 volunteers. Without further
maintenace, these configuration snapshots will be essen-
tially out-of-date because of numerous software and OS
upgrades. Effectively managing the evolving GeneBank
is a challenge. Further, we have not yet addressed
the privacy issue. The privacy for both the users who
contribute their configuration snapshots to the GeneBank
and the users who troubleshoot their computers with the
GeneBank need to be protected for real deployment. An
alternative to the GeneBank approach is to “search and
fetch” in a peer-to-peer troubleshooting community (see
Section II). Drawing the sample set in a peer-to-peer
fashion is essentially treating all computer configuration
snapshots from all the peer-to-peer participants as a dis-
tributed database that is always up-to-date and requires
no maintenance. Nonetheless, the peer-to-peer approach
does result in longer search and response time. Further,
ensuring the integrity of the troubleshooting result is a
challenge in the face of unreliable or malicious peers.
We have a proposal for a privacy and integrity-perserving
peer-to-peer troubleshooting system. For details, please
see [23].

VIII. C ONCLUSIONS

We have presented PeerPressure, a novel troubleshoot-
ing algorithm which uses statistics from a set of sample
machines as the golden state to diagnose the root cause
misconfigurations on a sick machine. In PeerPressure, we
introduce a ranking metric based on Bayesian estimation
of the probability of a suspect candidate being sick, given
the value of that suspect candidate.

We have developed a PeerPressure troubleshooter and
used a database of 87 real-usage machine configuration
snapshots to evaluate its performance. With 20 real-
world troubleshooting cases, PeerPressure can effectively
pinpoint the root-cause misconfigurations for 12 of the
cases. For the remaining cases, PeerPressure significantly
narrows down the number of root-cause candidates by
three orders of magnitude.

In addition to achieving the goal of effective trou-
bleshooting, PeerPressure also makes a significant step
towards automation in misconfiguration troubleshooting
by using a statistical golden state, rather than manually
identifying a single healthy state.

Future work includes multi-gene troubleshooting
where there are multiple root-cause entries instead of
one, as well as privacy-preservation mechanisms for real
deployment.

ACKNOWLEDGEMENT

We inherited the “App Tracer” that was implemented
by Chad Verbowski for the Strider toolkit [24]. Chad
has also given us valuable feedback and discussions on
the GeneBank DB schema design as well as on canoni-
calization heuristics for Registry entries. Emre Kiciman
has also contributed to the canonicalization heuristics
design. Chris Meek has given us valuable suggestions
on Baysian estimation algorithms. We received much
advice from our Database experts on the same floor
for the GeneBank design and optimizations. They are
Venki Ganti, Zhiyuan Chen, and Nico Bruno. This work
also benefited from numerous discussions with Chun
Yuan and Zheng Zhang. Zheng Zhang has given us
great support and encouragement on this work. We thank
everyone for their generous help.

REFERENCES

[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance
Debugging for Distributed Systems of Black Boxes. InPro-
ceedings of SOSP(2003).

[2] APAP, F., HONIG, A., HERSHKOP, S., ESKIN, E., AND

STOLFO, S. J. Detecting Malicious Software by Monitoring
Anomalous Windows Registry Accesses. InProceedings of
LISA (1999).

[3] BAILEY, E. Maximum RPM, 1997.
[4] BURGESS, M. A Site Configuration Engine. InComputer

Systems(1995).
[5] CHEN, M., K ICIMAN , E., FRATKIN , E., FOX, A., AND

BREWER, E. Pinpoint: Problem Determination in Large,
Dynamic, Internet Services. InProceedings of International
Conference on Dependable Systems and Networks (IPDS Track)
(2002).

[6] COUCH, A., AND GILFIX , M. It’s Elementary, Dear Watson:
Applying Logic Programming to Convergent System Manage-
ment Processes. InProceedings of LISA(1999).

[7] DELANEY, K. Inside Microsoft SQL Server 2000. Microsoft
Press, 2001.

[8] ENGLER, D., CHEN, D. Y., HALLEM , S., CHOU, A., AND

CHELF, B. Bugs as Deviant Behavior: A General Approach
to Inferring Errors in Systems Code. InProceedings of ACM
Symposium on Operating Systems Principles (SOSP)(October
2001).

[9] FORREST, S., HOFMEYR, S. A., SOMAYAJI , A., AND

LONGSTAFF, T. A. A Sense of Self for UNIX Processes. In
Proceedings of the IEEE Symposium on Research in Security
and Privacy(1996).

[10] GELMAN , A., CARLIN , J., STERN, H., AND RUBIN , D.
Bayesian Data Analysis. Chapman, 1995.

[11] KELLER, A., AND ENSEL, C. An Approach for Managing
Service Dependencies with XML and the Resource Description
Framework. InJournal of Network and Systems Management
(June 2002).

[12] KREMENEK, T., AND ENGLER, D. Z-Ranking: Using Sta-
tistical Analysis to Counter the Impact of Static Analysis
Approximations. InProceedings of 10th Annual International
Static Analysis Symposium(June 2003).

12

[13] LARSSON, M., AND CRNKOVIC, I. Configuration Management
for Component-based Systems. InProceedings of International
Conference on Software Engineering (ICSE)(May 2001).

[14] L IBLIT , B., AIKEN , A., ZHENG, A. X., AND JORDAN, M. I.
Bug Isolation via Remote Program Sampling. InProceedings
of Programming Language Design and Implementation (PLDI)
(2003).

[15] OSTERLUND, R. PIKT: Problem Informant/Killer Tool. In
Proceedings of LISA(2000).

[16] PETZOLD, C. Programming Windows with C# (Core Reference)
. Microsoft Press, 2002.

[17] REDSTONE, J. A., SWIFT, M. M., AND BERSHAD, B. N. Us-
ing Computers to Diagnose Computer Problems. InProceedings
of HotOS(2003).

[18] SILVER , M., AND FIERING, L. Desktop and Notebook TCO
Updated for the 21st Century.

[19] SOLOMON, D. A., AND RUSSINOVICH, M. Inside Microsoft
Windows 2000, 3rd ed. Microsoft Press, September 2000.

[20] Web-to-Host: Reducing the Total Cost of Ownership, The Tolly
Group.

[21] TRAUGOTT, S., AND HUDDLESTON, J. Bootstrapping an
Infrastructure. InProceedings of LISA(1998).

[22] Tripwire. http://www.tripwire.com/.
[23] WANG, H. J., HU, Y.-C., YUAN , C., ZHANG, Z., AND MIN

WANG, Y. Friends Troubleshooting Network, Towards Privacy-
Preserving Automatic Troubleshooting. Tech. Rep. MSR-TR-
2003-81, Microsoft Research, Redmond, WA, Nov 2003.

[24] WANG, Y. M., VERBOWSKI, C., DUNAGAN , J., CHEN, Y.,
WANG, H. J., YUAN , C., AND ZHANG, Z. STRIDER: A
Black-box, State-based Approach to Change and Configuration
Management and Support. InProceedings of LISA(2003).

13

