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Abstract
A paradigm shift has been taking place in the per-

sonal computer sharing model: a computer is no longer
shared by users, but shared by mutually distrusting appli-
cations or other content. This multi-application sharing
model is mismatched with today’s multi-user operating
systems like Windows and Linux, which offer protec-
tion only across users. This mismatch contributes sig-
nificantly to today’s malware problem: a user is often
tricked to download and install malware which runs with
the privileges of the user or even with escalated privi-
leges to harm the user’s machine.

Web-centric computing is another significant trend in
computing, which makes web browsers a dominant client
application platform. The browser platform supports a
multi-application sharing model. However, today’s web
browsers have never been designed and constructed as
an operating system: different web site principals may
coexist in the same protection domain, and there is no
coherent support for resource access, control, and shar-
ing. This makes browsers a vulnerable and functionally
limited platform.

In the light of these two trends, we envision Ser-
viceOS, a multi-service OS on which web applications
and traditional desktop applications converge. “Service”
comes from “Software-as-a-Service”. A service is some
generic content which can be either code or data. Ser-
vices are hosted in the cloud and cached on the client.
The owner of the service is an OS principal. ServiceOS
will enable an application model that synthesizes the best
elements from both desktop and web applications, pro-
viding fundamentally better security without sacrificing
functionality. We sketch our design and present open
challenges for this new paradigm of computing.

1 Introduction
Over the past two decades, there has been a paradigm
shift in the personal computer sharing model. As il-
lustrated in Figure 1, a computer is no longer used and
shared by multiple users, but rather it is used by a single
user to render content from different Internet origins or
to run multiple, sometimes mutually distrusting applica-
tions, many of which are obtained directly from the web.
The old model was commonly referred to as a multi-user
system where users are the principals of the system. We
call the new model a multi-application system, where the
owners of the applications are the principals. Since a
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Figure 1: Multi-User vs. Multi-Application systems

principal is the unit of protection, a system must ensure
that each principal’s resources are protected from one an-
other in terms of both resource access and usage. For
example, one principal’s state should not be accessed by
another principal, and one principal’s use of a shared re-
source, such as CPU, should not interfere with (e.g., deny
the service to) another principal.

Despite the multi-application sharing model in today’s
personal computing, today’s operating systems like Win-
dows and Linux do not treat applications (or content
from different origins) as first-class principals for protec-
tion and resource management. Applications, even when
downloaded by a user from obscure remote hosts, run
with the privileges of the logged-in user without protec-
tion from one another. This contributes significantly to
today’s malware problem: a user is often tricked into
downloading malicious software, which then typically
runs with the user’s privileges (and sometimes with es-
calated privileges), steals user’s data, and interferes with
other software on the computer.

In parallel to the transformation of the computer shar-
ing model is the trend of web-centric computing. As
significant amount of functionality has been created and
shifted into the web; web browsers are quickly becom-
ing a dominant client application platform. Often, users
only need a browser — independent of the underlying
OS, device, or their physical location — to satisfy all of
their computing needs from information search to shop-
ping, banking, communication, office tasks, and enter-
tainment. The same-origin policy (SOP), the central se-
curity policy for web browsers, mandates that a web doc-
ument (or a web application) from one origin cannot in-
terfere with another document from a different origin;
the origin is defined as the triple of <protocol, DNS do-
main name, port> [17]. This implies that a web applica-

1



tion is treated as a principal on the browser platform and
that its origin labels the principal [19]. However, today’s
browsers have never been designed and constructed as an
OS for these web applications: different principals may
coexist in the same protection domain, and there is no
coherent support for resource access, control, and shar-
ing. The lack of OS design in browsers impedes web ap-
plications’ capabilities of interacting with devices (e.g.,
camera, GPS) and allow a misbehaving (whether mali-
cious or poorly-written) web application to monopolize
system resources to itself.

As we can see from these two trends, traditional OSes
no longer have the right definition of OS principals for
today’s computing needs, while browsers have the right
principal model, but they lack an OS design. We envi-
sion that traditional desktop applications and web appli-
cations will converge on ServiceOS, a multi-service OS.
“Service” comes from “software-as-a-service”. A ser-
vice is some generic content which can be either code
or data. Services are hosted in the cloud and cached on
the client. The owner of the service is an OS principal.
In ServiceOS, web applications and traditional desktop
applications are equal citizens. ServiceOS will enable
an application model that synthesizes the best elements
from both desktop and web applications: it gives con-
trolled access to all system resources, enables offline op-
erations, provides proper protection across application
principals in terms of both access and usage, and sup-
ports the same software and content distribution model
as web applications, which enables OS, device, and lo-
cation independence.

With ServiceOS, we can achieve backward compat-
ibility for web applications. Adapting legacy desktop
applications may sacrifice backward compatibility when
the applications rely intimately on cross-application
sharing through file systems or registry, which is permit-
ted on today’s multi-user OSes.

The key benefits of ServiceOS are: 1) Our multi-
service OS design minimizes the impact of malware,
which would run as a separate principal from other ap-
plications and is therefore constrained by the malware’s
protection domain. Although many sandboxing mecha-
nisms [15] exist to contain malware, a user is required
to actively apply them to untrusted applications. In
contrast, ServiceOS sandboxes all services by default.
2) By providing resource access, control, and sharing,
ServiceOS enhances web applications’ functionality and
quality to be on par with desktop applications.

2 Limitations of today’s browsers and
operating systems

In this section, we elaborate on why today’s browsers
and operating systems are insufficient to support our con-

verged desktop and web application scenario.

2.1 The lack of OS design in today’s browsers

Web browsers have never been built as an operating sys-
tem, which is manifested as follows.

Cross-principal protection. For a long time,
browsers used only a single process for executing all web
site principals. Even with the latest released browsers IE
8 [11] and Google Chrome [3, 16], which employ mul-
tiple processes, an arbitrary number of web site princi-
pals can coexist in a single process. For example, when
a site a.com embeds other principals, such as ad.com

and gadget.com, the site and the embedded principals
coexist in the same process in IE 8 and Chrome. As a
result, principal protection logic is intertwined with con-
tent processing code at the content object and method
level. This is extremely error-prone as manifested in
numerous cross-principal vulnerabilities [4, 13, 2]. The
experimental OP browser [9] also doesn’t provide com-
plete cross-principal protection; for example, OP offers
no protection of display among principals. Our work
Gazelle [20], which is a part of the ServiceOS effort,
addresses cross-principal protection at the OS level and
completely segregates principals into separate protection
domains.

Device access and control. Today’s browsers don’t
expose any APIs for accessing devices like GPS or cam-
era. This significantly impedes web applications’ capa-
bilities. On the other hand, browsers offer an extremely
permissive plugin model, allowing plugin software to ex-
tend the browser and directly access the underlying OS.
Many plugins then expose devices to plugin content. For
example, Adobe Flash and Google Gears enable access
to certain devices and provide their own respective secu-
rity policies. This model is flawed because the plugins’
security policies are completely disconnected from one
another and from the browser’s policy, making it impos-
sible to enforce a uniform policy across all application
and content types. Worse, a plugin compromise leads to a
compromise of all privacy-sensitive devices and all other
principals [14, 18], since today’s plugins are granted un-
restricted access to the underlying OS.

Resource scheduling. Today’s browsers administer
no control on resource sharing, such as CPU scheduling
and network bandwidth allocation, among web site prin-
cipals when resources are under contention. As a result,
principals can interfere with one another in resource us-
age, leading to poor service quality and allowing misbe-
having principals to monopolize system resources. For
example, a malicious, embedded advertisement principal
can get an unfair amount of CPU, memory, and network
bandwidth, and even cause denial-of-service to the host
page.
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2.2 Insufficiency of existing operating systems

Web applications and traditional desktop applications
have two fundamental differences: trust model and cross-
principal application composition. These differences re-
veal limitations of existing operating systems in support-
ing our converged application scenario. We discuss these
differences and limitations below.

Different trust model. Existing operating systems
give significantly more trust to desktop applications than
web applications. For example, desktop applications are
allowed to access devices and file systems, but web ap-
plications are constrained by the browser sandbox, which
denies such access. The reason may be that desktop
application installations and launches are explicitly trig-
gered by the user. In contrast, web applications need not
be installed and can silently launch other web application
principals, for example by embedding them in frames or
objects, without any user interaction.

Nevertheless, even explicit user actions like installa-
tion and application launch do not necessarily mean that
the application is trustworthy. Social engineering at-
tacks have exploited users to install and launch malware,
which has been a serious and prevalent security prob-
lem [8]. Therefore, in ServiceOS’s converged applica-
tion model, we trust neither web applications nor desk-
top applications by treating each application as a separate
principal.

One question is whether we can map each applica-
tion to a separate user principal in an existing OS and
leverage an existing OS’s access control mechanisms for
resource or device access. Unfortunately, device access
control mechanisms in existing OSes have poor manage-
ability, as each physical device needs to be configured
with an access control policy regardless of its semantics.
With a large and growing number of principals involved,
each addition or upgrade of a physical device will re-
quire reconfiguring access control. This is cumbersome
and error-prone.

Cross-principal application composition. Another
significant difference is that web applications often em-
bed applications from different principals. This is a pop-
ular form of mashup that has enabled many creative web
sites. Such an application composition practice renders
CPU (or other resource) scheduling in today’s OSes un-
suitable, even when each application is mapped onto a
separate user principal. CPU scheduling in today’s OSes
would treat each principal instance as a scheduling unit
and fairly share the CPU among all involved instances,
regardless of the principal instance embedding hierar-
chy. This is undesirable in that an embedded application
has the ability to embed an arbitrary number of princi-
pals and thereby monopolize resource usage. Figure 2
shows such an example. An application a.com embeds
an ad application from attackerAd.com. By embed-
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Figure 2: A Web Service Composition Scenario. By embed-
ding many services, attackerAd.com mounts a denial-of-
service attack against a.com.

ding many other principals, attackerAd.com can deny
resources to a.com.

Note that cross-principal application composition can
be useful for desktop applications as well. For exam-
ple, a Word document can reference and embed an Excel
spreadsheet. On today’s desktops, such embedding hap-
pens to documents of a single user. It is easy to imagine
the desirability of such composition in a cross-principal
fashion.

3 The ServiceOS framework
3.1 Application and principal model

So far, we have used the term “application” loosely and
interchangeably with “content”. Traditionally, an appli-
cation is a software program. However, a software pro-
gram can take input which can in turn be a program. For
example, a Java virtual machine software takes Java pro-
grams as input; the Microsoft Word software takes Word
files as input, which may contain macros. This program
and input relationship can continue recursively. For ex-
ample, a Java program may be a Jython [1] interpreter
that takes Python programs as input and so on.

Note that the input data of a program may have a dif-
ferent owner from that of the program. For example, a
Word document may be owned by a user who bears no
relationship to Microsoft, which created and may even
host the Word software.

Therefore, we need to clearly define the principal of
an execution instance and the trust relationship between
various owners involved. To this end, we generically use
content to refer to either a software program or static
data, and content renderer to refer to a software pro-
gram that processes or renders some content. For ex-
ample, a Java VM is a content renderer for Java con-
tent. A content renderer is itself a form of content which
can be further rendered by some other content renderer.
Content can indicate which content renderer it trusts to
render it; this mapping can also be configured by the
user or the OS vendor. For example, in a web browser,
the content renderer for traditional web content, such as
HTML, JavaScript and CSS content, is the browser’s ren-
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dering engine which parses HTML and CSS, interprets
JavaScript, and maintains the DOM objects. The map-
ping between the content and its renderer in this case is
achieved by web servers indicating the content’s MIME
type and by the browser’s built-in configuration. We an-
ticipate the length of the content rendering chain to be
typically short with length one or two.

An execution instance of such a rendered-by chain is
driven by the content at the head of the chain. For exam-
ple, a Jython program drives the execution of the Jython
interpreter, which drives the Java VM, which drives the
x86 runtime. Therefore, the principal needs to be the
owner of the head content. For web content, it is the SOP
origin of that content. For a traditional application’s con-
tent, it can be a combination of the content’s SOP origin
and its certificate. Figure 3 gives an illustration of our ap-
plication and principal model for a traditional web site,
traditional plugin content, x86 content, and Word con-
tent.

This application and principal model is inspired by
today’s web and browsers. In addition to the de-
fault rendering engine of a browser for rendering tra-
ditional web content, other content renderers can be
added to the browser in the form of plugins to ren-
der other content. For example, the content renderer
for Adobe Shockwave video content is the Adobe Flash
plugin. In fact, the HTML object tag can be readily
used for expressing the chain of content and content ren-
ders. Suppose a user Alice is hosting her tax form at
https://alice.com/tax.html, which contains the
following content:

<object data=’’https://alice.com/tax.docx’’ classid=’’msword’’>
<param name=’’template’’

value=’’https://templates.com/tax.dotx’’>
</object>

<object id=’’msword’’
data=’’https://microsoft.com/software/Word.exe’’
classid=’’Xax’’>

</object>

The first object element describes the actual tax doc-
ument in the MS Word format. The content renderer is
indicated in the “classid” attribute. The Word template
file (for styling) is given as a parameter. The second ob-
ject element describes MS Word as content and indicates
the content renderer to be Xax, which is a sandboxed ex-
ecution runtime for x86 code [6].

Content embedding is a powerful paradigm in today’s
web, which has enabled creative application composi-
tions. Content can be embedded as isolated content, the
principal ID of which is the origin of embedded con-
tent [19]. For example, the frame tags are used to embed
isolated content . Alternatively, a content can be embed-

ded as library content, the principal ID of which is the in-
cluder’s origin [19]. For example, the script tag is used to
embed library content. We adopt this content embedding
model in ServiceOS. Content renderers need to express
to ServiceOS which content types are isolated and which
are library. ServiceOS is then responsible for creating
new principals or routing content to the right principals.

Some research OSes, such as Singularity [21], and
recent commercial platforms, such as iPhone or An-
droid [5], treat “applications” as principals. The “appli-
cation” refers to a software program, and doesn’t have
our notion of recursive content and content renderer
chain. This leads to a fundamental difference in the prin-
cipal definition. For example, alice.com/tax.docx
and bob.com/tax.docx will be rendered in the pro-
tection domain of a single principal because they both
use the application MS Word. This is undesirable in that
these two documents actually come from mutually dis-
trusting origins. In fact, rendering any malicious Word
document can compromise MS Word and all the docu-
ments that will be rendered in the future. In contrast, in
ServiceOS, these two documents will be rendered as two
separate principals in different protection domains with
a MS Word instance running in each protection domain.

3.2 Units of protection, failure containment, and
resource allocation

A principal is the unit of protection. In ServiceOS, prin-
cipals are completely isolated in resource access and us-
age by default, which is consistent with the same-origin
policy in today’s browsers. Any sharing across principals
must be made explicit.

Just as in desktop applications, where instances of an
application are run in separate processes for failure con-
tainment and independent resource allocation, a principal
instance in ServiceOS is the unit of failure containment
and the unit of resource allocation. For example, when a
user enters the same URL in different tabs, two instances
of the same principal are created. Principal instances are
isolated for all runtime resources, but principal instances
of the same principal share persistent state such as cook-
ies and other local storage.

Protection unit, resource allocation unit, and failure
containment unit can each use a different mechanism
or the same mechanism depending on the system im-
plementation. Nevertheless, the resource allocation unit
and the failure containment unit need to be the same or
more fine-grained than the protection unit. For example,
if content renderers are implemented in native code, then
an OS process can be the suitable mechanism for all three
purposes. If content renderers are written in type-safe
code, a software-based process, such as SIP [10], may be
used for the unit of protection, and a more fine-grained
unit may be used for resource allocation and failure con-
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Figure 3: The ServiceOS Architecture. Each gray box corre-
sponds to a content renderer needed to render the content above
it. The content’s SOP origin is labeled on top of each princi-
pal instance. Principal instances interact with system resources
through the ServiceOS system calls.

tainment.

3.3 Architecture

Figure 3 shows the high-level architecture of ServiceOS.
ServiceOS is completely agnostic to any content or ap-
plication semantics and is relatively simple. Content pro-
cessing is done in the unprivileged principal space. Prin-
cipal instances access system resources (e.g., network,
storage, display, devices, IPC) through ServiceOS sys-
tem calls. The system calls are designed for web applica-
tions’ needs and include content fetches, window or dis-
play delegation, and the APIs typically needed by desk-
top applications and desired by web applications, such
as device access and control. ServiceOS is the trusted
computing base and exclusively enforces system-wide
security policies including the same-origin policy, cookie
access policies, and remote server access policies (e.g.,
XMLHttpRequest). This applies even to plugin software,
unlike today’s browsers. These policies must be made
compatible with existing browsers: existing web appli-
cations should not run less securely on ServiceOS, and
new ServiceOS-enabled web applications should not run
less securely on legacy browsers.

Now we give a brief security analysis on the architec-
ture. Malicious content can compromise only its own
protection domain. A malicious content renderer com-
promises the protection domains of all content that uti-
lizes the renderer. A vulnerable renderer compromises
only the protection domains of the content that exploits
the renderer’s vulnerabilities.

4 Research challenges
4.1 Resource access control

As discussed in Section 2, resource access control in
browsers is largely non-existent and the current practice
of exposing underlying OS to plugins results in disparate

security and access control policies. Furthermore, de-
vice access control in traditional OSes poses poor man-
ageability. We identify the following requirements and
challenges for resource access control in ServiceOS:

No application is trusted: In ServiceOS, no applica-
tion is trusted. Therefore, all privacy-sensitive resources
like location or microphone must be denied access by de-
fault.

Uniform access control for all content types: Ser-
viceOS needs to exclusively manage the resource ac-
cess control independent of the content types or content
renderers in the principal space. This is unlike today’s
browsers which allow different access control policies
for different plugins.

Independence from physical devices: To address the
manageability problem in existing OSes’access control,
access control needs to be managed over resource seman-
tics such as location rather than physical devices such as
a specific model of a GPS device.

Usability: The user is the root of trust who gives appli-
cations permissions to access resources. We must ensure
our access control is usable. Existing approaches, such
as that of Android and Facebook, presents an applica-
tion manifest at the application installation time showing
all the resources needed by the application; then the user
is presented with the choice of accepting or denying the
application. This approach may be too coarse-grained.
We are exploring a new kind of manifest that presents
must-have and prefer-to-have resources and enables the
user to deny prefer-to-have resources for privacy reasons.
Other considerations in usable access control include un-
derstanding the tradeoffs of asking for user permissions
at the installation time or right before resource usage, and
managing the lifetime of a permission, whether it is for-
ever, per-session, for per-use. Another challenge is not
to overburden users with too many prompts.

4.2 Resource sharing

As pointed out in Section 2, cross-principal content em-
bedding renders commodity OSes’ resource scheduling
unfair. In ServiceOS, when under resource contention,
we must ensure that an embedded principal will not mo-
nopolize resources arbitrarily. In addition to fairness, we
need to meet the requirements of special applications,
such as that of real-time multimedia streams or mission-
critical functions like telephone usage.

4.3 Cross-principal sharing

Unlike traditional OSes, ServiceOS imposes strict isola-
tion across its principals by default. Instead of burdening
programmers with application-specific data access and
control, it is interesting to investigate systematic sharing
and information flow control that may be offered by Ser-
viceOS. Enabling application developers to easily spec-
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ify and validate sharing will be crucial for secure and
robust application engineering. Techniques from HiS-
tar [23], Flume [12], or Asbestos [7] may be tailored for
the ServiceOS setting.

4.4 Web application backward compatibility
vs. security

ServiceOS allows backward compatibility with existing
web applications. However, the security policies in to-
day’s browsers are not coherent and often at conflict, re-
sulting in significant difficulty in engineering secure web
applications. An important research topic could be to
design a set of security policies that are coherent and an-
alyze their compatibility cost.

4.5 Painless porting of desktop applications and
plugin software

Desktop applications and plugin software would need to
be ported to ServiceOS. Xax [6] and NaCl [22] have
given some evidence of the feasibility of porting tradi-
tional applications. Nevertheless, these systems still re-
quire significant effort to port sophisticated desktop ap-
plications; it would be useful to investigate tools to make
this process easier.

5 Summary
In this position paper, we have proposed ServiceOS,
a multi-application operating system that supports both
web and desktop applications as first-class principals.
This platform captures the multi-application sharing na-
ture of today’s personal computing, and it embraces web-
centric computing by providing web applications with
long-needed OS support, including cross-principal pro-
tection and resource management. ServiceOS closes a
significant source of malware that plagues today’s per-
sonal computers. At the same time, ServiceOS enriches
web applications to be as capable as desktop applica-
tions. Such a platform scenario also raises many open
research challenges.
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