
Shield: Vulnerability-Driven Network Filters for Preventing Known Vulnerability
Exploits

Helen J. Wang

Chuanxiong Guo

Daniel R. Simon

Alf Zugenmaier

{helenw, t-chuguo, dansimon, alfz} @ microsoft.com

Feburary, 2004

Technical Report
MSR-TR-2003-81

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052



Shield: Vulnerability-Driven Network Filters for
Preventing Known Vulnerability Exploits

Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier

Abstract— Software patching has not been an effective first-line
defense preventing large-scale worm attacks, even when patches
had long been available for their corresponding vulnerabilities.
Generally, people have been reluctant to patch their systems
immediately, because patches are perceived to be unreliable
and disruptive to apply. To address this problem, we propose
a first-line worm defense in the network stack, usingshields–
vulnerability-specific, exploit-generic network filters installed in
end systems once a vulnerability is discovered and before the
patch is applied. These filters examine the incoming or outgoing
traffic of vulnerable applications, and drop traffic that exploits
vulnerabilities. Shields are less disruptive to install and uninstall,
easier to test for bad side effects, and hence more reliable than
traditional software patches.

In this paper, we show that this concept is feasible by describ-
ing a prototype Shield framework implementation that filters
traffic at the transport layer. We designed a safe and restrictive
language to describe vulnerabilities as partial state machines of
the vulnerable application. The expressiveness of the language has
been verified by encoding the signatures of a number of known
vulnerabilites. Our evaluation provides evidence of Shield’s low
false positive rate and impact on application throughput. An
examination of a sample set of known vulnerabilities suggests
that Shield could be used to prevent exploitation of a substantial
fraction of the most dangerous ones.

I. I NTRODUCTION

One of the most urgent security problems facing adminis-
trators of networked computer systems today is the threat of
remote attacks on their systems over the Internet, based on
vulnerabilities in their currently running software. Particularly
damaging have been self-propagating attacks, or “worms”,
which exploit one or more vulnerabilities to take control of
a host, then use that host to find and attack other hosts with
the same vulnerability.

The obvious defense against such attacks is to prevent the
attack by repairing the vulnerability before it can be exploited.
Typically, software vendors develop and distribute reparative
“patches” to their software as soon as possible after learning
of a vulnerability. Customers can then install the patch and
prevent attacks that exploit the vulnerability.

Experience has shown, however, that administrators often do
not install patches until long after they are made available—
if at all [24]. As a result, attacks—including worms, such
as the widely publicized CodeRed [5], Slammer [30] and
MSBlast [18] worms—that exploit known vulnerabilities, for
which patches had been available for quite some time, have
nevertheless been quite “successful”, causing widespread dam-
age by attacking the large cohort of still-vulnerable hosts.

There are several reasons why administrators may fail to
install software patches:

• Disruption: Installing a patch typically involves reboot-
ing, at the very least, a particular host service, and possi-
bly an entire host system. An administrator for whom
system and service uptime are crucial may therefore
be unable to tolerate the required service or system
disruption.

• Unreliability: Software patches are typically released as
quickly as possible after a vulnerability is discovered, and
there is therefore insufficient time to do more than cursory
testing of the patch. For popular software programs, patch
testing is inherently difficult and involves an exponential
number of test cases due to their numerous versions,
and their dependencies on various versions of libraries—
which depend in turn on other libraries, and so on. Hence
patches can have serious undetected side effects in par-
ticular configurations, causing severe disruption and even
damage to the host systems to which they are applied.
Rather than risk such damage, administrators may prefer
to do their own thorough (and time-consuming) testing,
or simply wait—accepting the risks of vulnerability in
the meantime—until the patch has been vindicated by
widespread uneventful installation [2].

• Irreversibility: Most patches are not designed to be easily
reversible. Once it is applied, there is often no easy way
of uninstalling the patch, short of restoring a backup
version of the entire patched application (or even the
entire system). This factor exacerbates the risk associated
with applying a patch.

• Accident: An administrator may simply miss a patch
announcement for some reason, and therefore be unaware
of it, or have received the announcement but neglected to
act on it.

Because of these drawbacks to installing patches, methods
are being explored for mitigating vulnerabilities without in-
stalling patches, or at least until a patch is determined to
be safe to install. The goal is to address the window of
vulnerability between vulnerability disclosure and software
patching. (This window is illustrated in Figure 1 as the gap
between timesT2 and T3.) A firewall, for example, can
be configured to prevent traffic originating outside a local
network from reaching a vulnerable application, by blocking
the appropriate port. By doing so, it can protect an application
from attack from “outside”. Of course, blocking all traffic to
a port is a crude measure, preventing the application from
functioning at all across the firewall. Ideally, only traffic that
exploits the vulnerability would be blocked, while all other
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Fig. 1. Time Windows: the scale of the X-axis does not reflect the actual
time window duration. In fact, the time between any adjacent T’s could be0,
though it is typically much greater than 0; the time between T2 and T3 are
often in weeks or months.

traffic would be allowed to pass through to the application.
In this paper, we explore the possibility of applying an

intermediate “patch” in the network to perform this filtering
function, to delay (or perhaps in some cases even eliminate)
the need for installing the software patch that removes the vul-
nerability.Shieldis a system of vulnerability-specific,exploit-
genericnetwork filters (shields) installed either at the end host,
firewall or edge router, that examines the incoming or outgoing
traffic of vulnerable applications and drops or modifies the
traffic according to the vulnerability signature. Shield operates
at the application level protocol layer,above the transport
layer. For example, a shield (conceptually, there is one shield
per vulnerability) designed to protect against a buffer overrun
vulnerability would detect and drop traffic that resulted in an
excessively long value being placed in the vulnerable buffer.
Shield differs from previous anti-worm strategies (Section X)
in attempting to remove a specific vulnerability directly, rather
than mitigate or counter the effects of its exploitation.

Unlike software patches, shields can be deployed in the
network as well as in the network stack of the end host. They
are thus more separated from the vulnerable application—and
its wide variety of potential environment configurations—and
therefore less likely to have unforeseen side effects. In partic-
ular, their compatibility with normal operation is in principle
relatively easy to test: since they operate only on network
traffic, and are intended only to drop attack traffic, they can be
tested simply by exposing them to a suitably rich collection of
network traffic—such as a long trace of past network activity,
or a synthetic test suite of representative traffic—to verify that
they would allow it all through unaffected.

In this paper, we focus our attention on the design and
implementation of an end host-based Shield system. The
most efficient kind of end-host Shield would be positioned
at the highest protocol layer, namely the application layer
— assuming that hooks into that layer is available for traffic
interception and manipulation. This way, any redundant mes-
sage parsing would be avoided. For example, URLScan [6]
is essentially a Shield specific to Microsoft IIS web server,
which uses IIS ISAPI extension package that offers hooks
for HTTP request interception and manipulations. However,
most applications do not offer such extensilibiliy into their
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Fig. 2. Shield Usage

protocols. To this end, we have designed a Shield framework
that lies between the application layer and the transport layer
and offers shielding forany application level protocols. Being
above the transport layer, Shield does not need to deal with
IPSec-encrypted traffic. Encrypted traffic above the transport
layer, such as SSL- or application-specific encrypted traffic are
difficult for such a framework to handle1. Nevertheless, it is
sensible to build respective Shield frameworks for commonly
used protocols such as SSL and RPC [25]. And the techniques
described in this paper can be readily applied to them.

In our Shield framework, we model vulnerability signa-
tures as a combination of partial protocol state machines
and vulnerability-parsing instructions for specific payloads
(Section III). For generality, we abstract out the generic
elements of application-level protocols in our Shield archi-
tecture (Section IV). For flexibility and simplicity, we express
vulnerability signatures and their countermeasures in a safe,
restrictive, and yet expressive policy language, interpreted
by the Shield framework at runtime (Section VI). We also
minimize Shield’s maintenance of protocol state for scalability,
and apply defensive design to ensure robustness (Section V-
A). We have implemented a preliminary Shield prototype
and experimented with a number of known vulnerabilities,
including the ones behind the (in)famous MSBlast, Slammer,
and CodeRed worms (Section VIII). Our evaluation provides
evidence of zero false positives and manageable impact on
application throughput (Section IX). An examination of a
sample set of known vulnerabilities suggests that Shield could
be used to prevent exploitation of a substantial fraction of the
most dangerous ones (Section IX-A).

II. OVERVIEW OF SHIELD USAGE

Figure 2 gives an overview of basic Shield operations.
An end-host Shield Network Filter intercepts the network
traffic, and examines and manipulates the traffic according
to the installed shield policies. Each shield policy specifies a
vulnerability signature, i.e., how to recognize network traffic
that exploits a given vulnerability, as well as the actions to take

1Nonetheless, since Shield runs with the root priviledge on end hosts, it
is possible for Shield to obtain encryption keys and perform decryption. In
fact, the Shield framework would not incur heavy overhead for stream-based
ciphers.
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when such traffic is encountered. Conceptually, there is one
Shield policy per vulnerability. When a new vulnerability is
discovered, a shield designer—typically the vulnerable appli-
cation’s vendor—creates a Shield policy for the vulnerability
and distributes it to users running the application2. Incoming
shields protect a host from potentially malicious incoming
traffic, in a similar fashion to a firewall, but with much more
application-specific knowledge. There can also beoutgoing
shields filtering out traffic that triggers vulnerability-exploiting
responses back to the host itself, or protects other hosts on
the same local network from the host’s own vulnerability-
exploiting outgoing traffic. The latter use assumes that the
shield is installed at a higher privilege level than the malicious
or compromised sender of the vulnerability-exploiting traffic.
Otherwise, the sender could simply disable the shield before
attacking the other hosts.

When receiving a shield policy, the end host enacts the
policy by installing the policy into the Shield system. Note that
this action does not require re-starting the vulnerable service
or rebooting the machine. Once a software patch is applied to
the vulnerable application, eliminating the vulnerability, the
corresponding policy can be removed from Shield.

III. V ULNERABILITY MODELING

An essential part of the Shield design is the method of
modeling and expressing vulnerability signatures. AShield
vulnerability signaturespecifies all possible sequences of
network events and specific payload characteristics that lead
to any exploit of the vulnerability. (Note that not all vul-
nerabilities are suitable for shielding. This issue is discussed
further in Section IX-A.) For example, the signature for the
vulnerability behind the Slammer worm [30] is the arrival of
a UDP packet at port 1434 with a size that exceeds the legal
limit of the vulnerable buffer used in the Microsoft SQL server
2000 implementation. More sophisticated vulnerabilities re-
quire tracing a sequence of messages leading up to the actual
message that can potentially exploit the vulnerability.

To express vulnerability signatures precisely, we have de-
veloped a taxonomy for modeling vulnerabilities, as illustrated
in Figure 3.

Each application can be considered as a finite state machine,
which we call theapplication state machine. Overlaying on
top of the application state machine is theProtocol State
Machine where the transitions are network event arrivals.
The protocol state machine is much smaller and simpler
than the application state machine. And the application state
machine can be viewed as a refinement of the protocol state
machine. That is, when zooming into a particular state of
the protocol state machine, there is a fine-grained application
state machine (e.g., enlarged stateS2 in the figure). Shield
is primarily concerned with the protocol state machine. We
define thepre-vulnerability stateas the state in the protocol
state machine at which receiving an exploitation network event

2Secure and expeditious distribution of Shield policies is an open research
question by itself, and is out of the scope of this paper.
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Fig. 3. Vulnerability Modeling

could cause damage (v4 in the figure). We call the partial
protocol state machine that leads to the pre-vulnerability state
thevulnerability state machine, and the network event that can
potentially contain the vulnerability thevulnerable event.

A Shield vulnerability signature essentially specifies the
vulnerability state machine and describes how to recognize
the vulnerability in the vulnerable event. A Shield policy for
a vulnerability includes both the vulnerability signature and the
actions to take on recognizing an exploit of the vulnerability.
In Section VI, we detail our design of a policy language for
Shield policy specification.

At a high level, a Shield for a vulnerability intercepts its
application’s traffic and walks through the vulnerability state
machine; when reaching the pre-vulnerability state, the Shield
examines the vulnerable event for possible exploits and takes
the specified actions to protect against the exploits if they are
present.

IV. SHIELD ARCHITECTURE

A. Goals and Overview

The objective of Shield is to emulate the part of the
application level protocol state machine that is relevant to its
vulnerabilities and counter any exploits at runtime.

We identify three main goals for the Shield design:

1) Minimize and limit the amount of state maintained by
Shield: Shield must be designed to resist any resource
consumption (“Denial-Of-Service”, or “DoS”) attacks.
Therefore, it must carefully manage its state mainte-
nance. For an end-host-based Shield, the bar is not high:
Shield only needs to be as DoS-resilient as the service
it is shielding.

2) Enough flexibility to support any application level pro-
tocol: Flexibility must be designed into Shield so that
vulnerabilities related to any application level protocol
can be protected by Shield. Moreover, the Shield system
design itself should be independent of specific applica-
tion level protocols, because the Shield system design
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and implementation would simply not scale if it were
necessary to add individual application level protocols
to the core system one at a time.

3) Defensive design: We must design Shield in such a
way that Shield does not become an easier alternative
attack target. A robust Shield design must ensure that
Shield’s state machine emulation is consistent with the
actual state machine running in the vulnerable applica-
tion under all conditions. In other words, it is crucial
for us to defend against carefully crafted malicious
messages that may lead to Shield’s misinterpretation of
the application’s semantics.

Shield achieves goal 2 by applying the well-known principle
of “separating policy from mechanism”. Shield’s mechanism
is generic, implementing operations common among all ap-
plication level protocols. Shield policies specify the varying
aspects of individual application level protocol design as well
as the corresponding vulnerabilities. This separation ensures
that Shield has the flexibility to support any application-level
protocol.

We identify the following mechanisms as the necessary
generic elements of an application level protocol implemen-
tation: (Less obvious generic elements will be explained
throughout the next section.)

• Application level protocols between two parties (say,
a client and server) are implemented using finite state
automata according to some state machine design speci-
fication.

• To carry out state machine transitions, each party must
perform event identification and session dispatching
if the protocol allows multiple parallel sessions. (For
transaction-based protocols such as HTTP where a trans-
action is a pair of request and response, a session has just
one packet for each direction). As a result, application-
level messages must indicate a message type and session
ID (if applicable).

• Implementations of datagram-based protocols must han-
dle out-of-order application datagrams for its sessions.
(See Section V-B.)

• Implementations of application-level protocols whose
messages cross packet boundaries must handle fragmen-
tation. (See Section V-C.)

The policy specifies the following:

• Application identification: how to identify which packets
are destined for which application. The port number used
serves this purpose.

• Event identification: how to retrieve the message type
from a received message.

• Session identification(if applicable): how to determine
which session a message belongs to.

• State machine specification: the states, events and tran-
sitions defining the protocol automaton. In our setting,
the specification is for the vulnerability state machine,
a subgraph of a complete protocol state machine (see
Section III).

We first present the Shield mechanisms, including the
policy-enabling mechansims, in Section IV-B. Then, we
present our policy language in Section VI.

B. Components and Data Structures

In this section, we describe the essential components and
data structures of an end-host Shield system. Figure 4 depicts
the Shield architecture.
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Data Structures

There are two main data structures: theapplication vulner-
ability state machine specifications(“Spec”) and the runtime
session states.

The Policy Loader transforms Shield policies into Specs.
Multiple vulnerability state machines for the same application
are compiled into one “application vulnerability state machine
specification”. Therefore, there is effectively one state machine
specification per application. The purpose of a Spec is to
instruct Shield on how to emulate the application vulnerability
state machines at runtime. As mentioned in Section IV-A, the
Spec contains the state machine specification, port number(s)
for application identification, and event and session identifica-
tion information.

For event and session identification, a Spec indicates the
location (i.e., offset and size) vector for the event type and
session ID information in the packet, as well as the event type
values that are of concern to Shield. For application protocols
that are not session-oriented, the session ID is left unspecified,
and each session consists of a single message. Sometimes,
an application-level protocol may involve negotiating for a
dynamically selected port number as a session ID for further
communications (e.g., FTP [22] and RTP [26]). In this case,
the new port number will be registered with Shield for applica-
tion identification, and the session ID is specified as “PORT”,
indicating that all communication on this port is considered as
a single session. Upon termination of the session, the dynamic
port is de-registered with Shield.
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To generalize event recognition and session dispatching to
text-based application level protocols such as HTTP [7] and
SMTP[12], we allow the units of “offset” and “size” to be
defined aswords(made of characters), in addition to bytes. For
example, in HTTP and SMTP, the message type is indicated
at offset 0, with a size of 1 word. In HTTP, this field contains
the request-line method, such as ”GET” or ”POST”; when it
is an HTTP version, it represents a status message type [7].
And in SMTP, this field contains the SMTP command, such as
“MAIL”, “RCPT”, or “DATA”. Of course, we can generalize
the unit even further using unit delimiters. For example, the
unit deliminator for words is space while the unit delimiter
for bytes is nothing. Nonetheless, we have not found this to
be necessary for a handful of protocols we have examined.

Some application-level protocols (such as HTTP) allow
multiple application-level messages to be received in a single
buffer. Therefore, in addition to the session ID and message
type, the Spec also specifies theapplication level message
boundary marker, if any. For example, for HTTP, the message
boundary marker is CRLF CRLF; and for SMTP, it is CRLF.

One key challenge is that application level messages may
not be received in their entirety (due to congestion control or
application-specific socket usage) or in order (due to the use of
a protocol such as UDP). Even the essential event-identifying
parts of a message, such as event type and session ID, may not
arrive together. We address this problem using DoS-resilient
copying or buffering, which is detailed in Section V.

Note that thesessionis an important abstraction for packet
dispatching and as a unit of shielding, apart from socket
descriptors or host pairs. This is because one socket descriptor
may be used for multiple sequential sessions; and multiple
sockets may be used to carry out communications over one
session (e.g., FTP [22]). Similarly, one pair of hosts may
be carrying out multiple sessions. In these cases, the use of
sessions eliminates any ambiguities on which packets belong
to which session.

The other data structure in Shield issession state. At
runtime, Shield maintains session state for each potentially
vulnerable communication session. The session state includes
the current state of the session and other context information
needed for shielding.

Shield Modules

Now, we describe each Shield module in turn:
• Policy Loader:Whenever a new Shield policy arrives or

an old policy is modified, the Policy Loader integrates the
new policy with an existing Spec if one exists, or creates a
new one otherwise. The Shield policy is expressed in the
Shield policy language. Policy loading involves syntax
parsing and the syntax tree is also stored in the Spec
for the purpose of run-time interpretation of shielding
actions (For details on the policy language design and
interpretation, please see Section VI).

• Application Dispatcher:When raw bytes arrive at Shield
from a port, theApplication Dispatcheris invoked to

determine which Spec to reference for the arrived data,
based on the port number. While an application-level
protocol may use many port numbers, each port number
corresponds to a single application. The Application
Dispatcher forwards the raw bytes and the identified
Spec to the Session Dispatcher for event and session
identification.

• Session Dispatcher:On obtaining the locations of the
session ID, message type, and message boundary marker
from the corresponding Spec, the Session Dispatcher
extracts multiple messages (if applicable), recognizes the
event type and session ID, and then dispatches the event
to the corresponding state machine instance.

• Runtime State Machine Instance (SMI):There is one
state machine instance per session. Given a newly-
arrived event and the current state maintained by the
corresponding session state, the SMI consults the Spec
regarding which event handler to invoke. (Event handlers
are included in Shield policies.) Then the SMI calls the
Shield Interpreter to interpet the event handler.

• Shield Interpreter: The Shield Interpreter interprets
the event handler, which specifies how to parse
the application-level protocol payload and examine it
for vulnerabilities. It also carries out actions like
packet-dropping, session tear-down, registering a newly-
negotiated dynamic port with Shield, or setting the next
state for the current SMI.

V. I MPLEMENTATION ISSUES

A. Scattered Arrivals of an Application Message

Although Shield intercepts traffic above the transport layer
and does not need to cope with network-layer fragments,
each data arrival perceived by Shield doesnot necessarily
represent a complete application level message that is in-
dependently interpretable by the application. The scattered
arrivals of a single application level message could be due
to TCP congestion control or some specific message-handling
implementations of an application. For instance, a UDP Server
may make multiple calls torecvfrom() to receive a single
application level message. In this case, Shield would recognize
multiple data arrivals for such messages. This complicates
session dispatching when session ID or message type are not
received “in one shot”. It also complicates payload parsing in
the event handlers when not enough data has arrived for an
event-handler to finish parsing and checking. Here, we must
copy(i.e., buffer and pass on)part of the incompletely-arrived
data in the Shield system, and wait for the rest of the data to
arrive, before we can interpret it.

In addition, we need toindex copy buffers so that later
arrivals of the same message for a given session can be stitched
together properly. Although socket descriptors are not appro-
priate to identify sessions (Section IV-B), they are safe for
indexing copy buffers: while multiple sockets could be used
for one session (e.g., FTP [22]), a single application message
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is typically 3 not scattered over multiple sockets—otherwise
the application would not be able to interpret the parts of the
message due to the lack of information such as session ID or
message type; similarly, although one socket descriptor could
be used for multiple parallel sessions, an application message
has to be received on a socket continuously to its completion
without interruptions from any other application messages.
Therefore, we can applyper-socketcopying for incomplete
message arrivals.

We differentiate betweenpre-session copyingandin-session
copying. Pre-session copyinghappens when the session ID in-
formation has not completely arrived, whilein-session copying
refers to the copying of the data whose session is known.
A copy buffer is associated with a socket initially before a
session ID fully arrives. Once the session ID is received,
the copy buffer is associated with both a socket and its
respective session. Once a complete application message has
been received, the copy buffer is de-allocated.

We do not need to save the entire partially arrived message,
but only the partially arrivedfield. For example, when a
Session ID field has not arrived completely—say only 2 out
of 4 bytes—Shield only needs to remember that it is parsing
the Session ID field, and saves the received two bytes only.
Therefore, copying in Shield is small.

Here, we introduce another runtime data structure that needs
to be maintained by Shield:parsing state. This state is per
application-level message, and it records which field of an
application message is being parsed, and how many bytes have
already been received for that field. The field has to be a
“terminal” field rather than a structure of fields: For a field
nested in other structures or an array, the field is represented
as something like “someStructure.fields[i]”. This restriction is
to minimize the amount of copying—copying for a terminal
field is typically small.

For a vulnerable application, we must maintain the state
of the current field being parsed foreachof the application
messages,evenwhen Shield had already determined that the
session to which the message belongs would not lead to any
exploit. (Nonetheless, we do not maintain session state and the
copy buffer for such sessions.) This is to avoid ambiguity: if
we do not keep the parsing state for the message, other parts
of the message would be treated as new application messages.
Attackers could easily craft parts of a single application
level message, send them separately, and cause inconsistencies
between the emulated state machine in Shield and the actual
state machine in the application.

For Shield to be able to parse application messages, parsing
instructions (or payload formats) for all message types of
an application must be specified to Shield through policy
descriptions. Therefore, payload formats are also part of the
Spec. Fortunately, Shield does not need to parse all messages
in detail, but only the parts necessary for detecting the presence
of an exploit. Therefore, we can aggressively bundle many

3pTCP [10] proposes the use of TCP-v as an abstract of a connection which
can use multiple sockets instead of one as in TCP. If pTCP were deployed,
Shield would use TCP-v to index the copy buffer instead.

fields of an application message into one field with a total
byte count or word count, which will be the number of bytes
or words to skip during parsing. When Shield concludes the
innocence of a session, the goal of parsing its subsequent
application-level messages is only to find the end of those
messages. Hence, parsing for those messages can be even
further streamlined.

While specifying all application messages seems daunting,
if an application level protocol were specified in a standard and
formalized format (such as our policy language-like format—
see Section VI), we could automatically extract payload
format specifications and vulnerability state machines from
that format to our policy language. On the other hand, if a
Shield designer knows for a fact that scattered arrivals of a
message does not happen (e.g., single rather than multiple
recvfrom() calls when receiving a single application message
in a UDPServer implementation), then only events involved in
the vulnerability state machine need to be specified.

B. Out-of-Order Arrival of Application Datagrams

When an application-level protocol runs on top of UDP, its
datagrams can arrive out of order. Applications that care about
the ordering of these datagrams will have a sequence number
field in their application level protocol headers. For Shield
to properly carry out its exploit detection functions, Shield
copies the out-of-order datagrams, and passes them on to the
applications. This way, Shield can examine the packets in their
intended sequence. Shield sets the upper limit of the number
of copied datagrams to be the maximum number of out-of-
order datagrams that application level protocol can handle.
Hence, this maximum also needs to be expressed in the policy
descriptions, so does the sequence number location.

C. Application Level Fragmentation

Shield runs on top of the transport layer. Hence, Shield
does not need to deal with network-layer fragmentation and
re-assembly.

Nonetheless, some application-level protocols use applica-
tion data units and perform application level fragmentation and
re-assembly. For protocols on top of TCP, bytes are received
in order. And for protocols on top of UDP, Shield copies their
out-of-order datagrams to retain the correct packet sequence
(see the above section). Therefore receiving and processing
application level fragments is no different from processing
partially arrived data, as explained in Section V-A. However,
the Spec needs to contain the location of the application-level
fragment ID in the message, so that a fragment is not treated
as an entire message event.

VI. SHIELD POLICY LANGUAGE

In this section, we present the Shield policy language which
is used to describe the vulnerabilities and their countermea-
sures for an application.

Figure 5, 6, 7 shows some examples of our policy language
usage. They are policy scripts for the vulnerabilities behind
MSBlast [18], Slammer [30], and CodeRed [5], respectively.
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# SHIELD (Name, Transport_Protocol, (port-list))
SHIELD (Vulnerability_Behind_MSBlast, TCP, (135, 139, 445))

# where to retrieve SESSION_ID and MSG_TYPE from
SESSION_ID_LOCATION = (12, 4);
MSG_TYPE_LOCATION = (2, 1);

INITIAL_STATE S_WaitForRPCBind;
FINAL_STATE S_Final;
STATE S_WaitForRPCBindAck;
STATE S_WaitForRPCAlterContextResponse;
STATE S_WaitForRPCRequest;
STATE S_WaitForSessionTearDown;

# EVENT eventName = (<eventTypeValue>, <direction>)
EVENT E_RPCBind = (0x0B, INCOMING);
EVENT E_RPCBindAck = (0x0C, OUTGOING);
EVENT E_RPCBindNak = (0x0D, OUTGOING);
EVENT E_RPCAlterContext = (0x0E, INCOMING);
EVENT E_RPCAlterContextResponse = (0x0F, OUTGOING);
EVENT E_RPCRequest = (0x0, INCOMING);
EVENT E_RPCShutdown = (0x11, OUTGOING);
EVENT E_RPCCancel = (0x12, INCOMING);
EVENT E_RPCOrphaned = (0x13, INCOMING);

STATE_MACHINE = {
# (State, Event, Handler),
(S_WaitForRPCBind, E_RPCBind, H_RPCBind),
(S_WaitForRPCBindAck, E_RPCBindAck, H_RPCBindAck),
(S_WaitForRPCRequest, E_RPCRequest, H_RPCRequest),
...
};

# payload parsing instruction for P_Context
PAYLOAD_STRUCT {

SKIP BYTES(6) dummy1,
BYTES(1) numTransferContexts,
SKIP BYTES(1) dummy2,
BYTES(16) UUID_RemoteActivation,
SKIP BYTES(4) version,
SKIP BYTES(numTransferContexts * 20) allTransferContexts,

} P_Context;

# payload parsing instruction for P_RPCBind
PAYLOAD_STRUCT {

SKIP BYTES(24) dummy1,
BYTES(1) numContexts,
SKIP BYTES(3) dummy2,
P_Context[numContexts] contexts,
...

} P_RPCBind;

HANDLER H_S_RPCBind (P_RPCBind)
{

# if invoking the RemoteActivation RPC call
IF (>>P_RPCBind.contexts[0] == 0xB84A9F4D1C7DCF11861E0020AF6E7C57)

RETURN (S_WaitForRPCBindAck);
FI
RETURN (S_Final);

};

HANDLER H_RPCBindAck (P_RPCBindAck)
{

RETURN (S_WaitForRPCRequest);
};

HANDLER H_RPCRequest (P_RPCRequest)
{

IF (>>P_RPCRequest.bufferSize > 1023)
TEARDOWN_SESSION;
PRINT ("MSBlast!");
# since other RPC requests can come as well
RETURN (S_Final);

FI
RETURN (S_WaitForSessionTearDown);

};

# ... other PAYLOAD_STRUCTs and Handlers not included here ...

Fig. 5. Excerpt from the policy description of the vulnerability behind
MSBlast [18]

There are two parts of the policy specification in the Shield
language. The first part includes states, events, state machine
transitions, and generic application level protocol information
such as ports used, the locations of the event type, session
ID, sequence number or fragment ID in a packet, and the
message boundary marker. This part of the policy specification
is loaded into the Application Vulnerability State Machine
Specification (Spec) directly by the Policy Loader (Figure 4),
and is independent of runtime conditions.

The second part of the policy specification is for run-
time interpretation during exploit checking. This includes the
handler specification and payload parsing instructions (i.e.,

# Vulnerability behind Slammer
SHIELD (VulnerabilityBehind_Slammer, UDP, (1434))

# 0 offset, size of 1 byte
MSG_TYPE_LOCATION = (0, 1);

INITIAL_STATE S_WaitForSSRPRequest;
FINAL_STATE S_Final;

# MsgType = 0x4
EVENT E_SSRP_Request = (0x4, INCOMING);

STATE_MACHINE = {
(S_WaitForSSRPRequest, E_SSRP_Request, H_SSRP_Request),
};

HANDLER H_SSRP_Request (DONT_CARE) {
COUNTER legalLimit = 128;

# MSG_LEN returns legalLimit + 1 when legalLimit is exceeded
COUNTER c = MSG_LEN (legalLimit);
IF (c > legalLimit)

DROP;
RETURN (S_FINAL);

FI
RETURN (S_Final);

};

Fig. 6. Policy description of the vulnerability behind Slammer [30]

# Shield for vulnerability behind CodeRed
SHIELD(CodeRed, TCP, (80))

INITIAL_STATE S_WaitForGetRequest;
FINAL_STATE S_Final;

#
MSG_TYPE_LOCATION= (0, 1) WORD;

MSG_BOUNDARY = "\r\n\r\n";

EVENT E_GET_REQUEST = ("GET", INCOMING);

STATE_MACHINE = {
(S_WaitForGetRequest, E_GET_Request, H_Get_Request),
};

PAYLOAD_STRUCT {
WORDS(1) method,
WORDS(1) URI,
BYTES(REST) dummy2,

} P_Get_Request;

HANDLER H_Get_Request (P_Get_Request) {
COUNTER legalLimit = 239;
COUNTER c = 0;

# \?(. * )$ is the regular expression to retrieve the
# query string in the URI
# MATCH_STR_LEN returns legalLimit + 1 when legalLimit is exceeded
c = MATCH_STR_LEN (>>P_Get_Request.URI, "\?(. * )$", legalLimit);
IF (c > legalLimit)

# Exploit!
TEARDOWN_SESSION;
RETURN (S_FINAL);

FI
RETURN (S_FINAL);

};

Fig. 7. Policy description of the vulnerability behind CodeRed [5]

PAYLOAD STRUCT definitions in the figures). The role of
the handler is to examine the packet payload and pinpoint any
exploit in the current packet payload, or to record the session
context that is needed for a later determinination of exploit
occurrence. To examine a packet, a handler needs to follow
the policy’s payload parsing instructions.

When a policy is loaded, the Policy Loader parses the syntax
of the handlers and the payload parsing instructions, and stores
the syntax tree in the Spec for run-time interpretation.

A. Payload Specification

The PAYLOAD STRUCT definitions specify how to parse
an application-level message. Shield needs not parse out all
the fields of a payload as in the actual applications, but only
needs to parse the fields relevant to the vulnerability. We allow
the policy writers to simplify payload parsing by clustering
insignificant fields together as a single dummy field of the

8



required number of bytes (e.g., dummy1 field of PRPCBind
in Figure 5). Such fields are marked as skippable during
parsing though the keywordSKIP so that no copy buffer
is maintained for such fields (Section V-A). From examining
a number of application level protocols, we find that payload
parsing specification only needs to support a limited set of
types for fields including bytes of any size (i.e., BYTES(num)
where “num” could be a variable size or an expression),
words of any size (i.e., WORDS(num)) for text-based proto-
cols, (multi-dimensional) array of PAYLOADSTRUCT’s, and
boolean.

In a sense, our payload parsing specification for an
application-level protocol message is like the Network Data
Representation (NDR) [25] layout of the RPC stub data ex-
pressed in Interface Definition Language (IDL) [25] definition.
IDL provides syntax for describing structured data types and
values for RPC procedure call inputs and outputs; and NDR
provides a mapping of IDL data types onto octet streams [25].
In fact, any application payload can be expressed in IDL-like
syntax, then serialized into raw bytes with NDR-like encoding.
Therefore, we believe a payload specification like ours is
potentially generic enough to express any application payload.

B. Handler Specification

The Shield language for handler specification is very simple,
and highly specialized for our purpose. Variables have only
two scopes: They are either local to a handler or “global”
within a session across its handlers. There are only four data
types: BOOL for boolean, COUNTER for whole number, byte
arrays such as “BYTES(numBytes)”, and word arrays such
as “WORD(numWords)”. We also have built-in variables for
handlers to use, such as SESSIONID.

Built-in functions include DROP , TEARDOWNSESSION,
length-based functions such as MSGLEN (Figure 6) and
MATCH STR LEN (Figure 7), and regular expression func-
tions that may be needed for text-based protocols. DROP
drops a UDP packet while TEARDOWNSESSION closes
all sockets associated with a session. The regular expression
functions are data stream-based rather than string buffer-
based. That is, they must be able to cope with scattered
message arrivals as well. Similarly, length functions are also
stream-based with a required parameter of “stop count” (e.g.,
“legalLimit” in our example scripts in the figures) to facilitate
the handling of buffer overrun-type of vulnerabilities. When
the length reaches “stop count”, counting stops and returns
“stop count”+1. This way, Shield will not count and maintain
state beyond what is necessary in the case of buffer-overrun
exploits.

The syntax “Àpayload” instructs Shield to parse the bytes
that represent “payload” of the packet, according to the parsing
instruction defined for “payload” (i.e., there should be a
definition: “PAYLOAD STRUCT{...} payload;” earlier in the
policy decription). The parsed fields of a PAYLOADSTRUCT
are treated as local variables for that handler. Within the han-
dler, we allow assignments, if-statements, special-purpose for-
loops, and return-statements that exit the handler and indicates

the next state the session should be in. The specialized for-
loops are more of a syntax sugar for parsing iterative payload
structures such as array of items rather than traditional general-
purpose for-loops. For example, given “FOR (item INÀ
Payload.itemArray){ ... }”, the interpreter parses items of
the “itemArray” field of the “Payload” iteratively, according
to the “Payload” definition, and along the way, performs some
operations on the bytes representing each “item”. Note that the
interpreter does not keep state as we parse the items out of an
array.

During handler interpretation, the current payload being
parsed may not be completely received. In this case, we save
the execution state of the handler as part of the session state
so that when new data arrives, the handler’s execution can
be resumed. This is very much like call continuation. In
our case, the continuation state includes a queue of current
handler statements being executed (because of potentially
nested statements) and the parsing state (Section V-A) for the
payload—that is, the current field of the payload being parsed,
and the bytes read for that field.

The restrictive nature of our language makes it a safer
language than general-purpose languages. While our language
is restrictive, we find it sufficient for all of the vulnerabilities
that we have worked with and the application level protocols
that we have examined. However, it is still evolving as we
gain experience from shielding more vulnerabilities.

Our language is simpler than the Bro language [20] that
is used for scripting the security policies of the Bro Nework
Intrusion Detection System (NIDS). This is because Bro per-
forms network monitoring and intrusion detection for the net-
work layer and above of the network stack and also monitors
cross-application, cross-session interactions based on various
attack patterns. In contrast, Shield is only concerned with
application-specific traffic passing over top of the transport
protocols or even higher level protocols such as HTTP and
RPC. Furthermore, a key advantage of the vulnerability-driven
approach of Shield over attack- or exploit-driven approachs
such as NDIS is that Shield does not need to consider attack
activities before the vulnerable application is involved (as in,
for example, multi-stage attacks. Shield only needs to screen
the traffic of particular vulnerable applications.

On the other hand, our language is more complex than the
declarative Click router configuration language [13] because it
has to cover more tasks than just configuration. Shield needs
to parse the payload and perform actions based on the runtime
events.

VII. A NALYSIS

A. Scalability with Number of Vulnerabilties

In this section, we discuss how Shield scales with the
number of vulnerabilities on a machine.

The number of Shields on an end host shouldnot grow
arbitrarily large, because Shields will presumably be removed
when its corresponding vulnerability is patched.

Also, Shields are application-specific, adding negligible
overhead to applications to which they do not apply. Hence,N
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Shields forN different applications is equivalent to a single
shield in terms of their effect on the performance of any single
application.

An application may have multiple vulnerabilities over time.
The state machines that model these vulnerabilities should
preferably be merged into a single one. Otherwise, each state
machine must be traversed for each packet, resulting in linear
overhead. When these vulnerabilities appear on disjoint paths
of the merged state machine, per-packet shield processing
overhead for them is almost equivalent to the overhead for
just one vulnerability. For vulnerabilities that share the same
path in the state machine, however, shield overhead may be
cumulative. On the other hand, our data on vulnerabilities
presented in Section IX-A suggests that this cumulative effect
is not significant: For worm-exploitable vulnerabilities, no
more than three vulnerabilities ever appeared over a single
application protocol throughout the whole year.

In any case, for vulnerable applications, the application
throughput with shield is, at worst, halved, since the network
traffic is processed at most twice —once in Shield and once in
the application. Nonetheless, our experiment over our Shield
prototype indicates that the Shield’s impact on application
throughput is quite small (Section IX-B).

B. False Positives

By design, shields are able to recognize and filteronly traffic
that exploits a specific vulnerability, and hence should have
very low false positives. However, false positives may arise
from incorrect policy specification due to misunderstanding of
the protocol state machines or payload formats. Such incorrect
policy specification can be debugged with stress test suites
or simply by replaying a substantial application traffic traces.
Trace replay at the application level is easy since it is not
necessary to replay the precise transport protocol behavior.

Another source of false positives may come from the
application behavior upon receiving an exploit event. The
application state machine embedded at that state may only
trigger the vulnerable code based on the local machine setting
or some runtime conditions. While such information can also
be incorporated in Shield, it is difficult to generalize such
application-specific implementation details to simple and safe
policy language constructs. For the vulnerabilities with which
we have experimented, we have not observed such false
positives (Section IX-C).

VIII. I MPLEMENTATION

We have prototyped an end host-based Shield system on
Microsoft Windows XP. In particular, we have implemented
Shield as a Microsoft WinSock2 Layered Service Provider
(LSP) [11]. WinSock2 API is the latest socket programming
interface for network applications on Windows. At runtime,
these network applications link in the appropriate socket
functions from WinSock2 dymamically linked library (DLL)
upon socket function calls. The LSP mechanism in WinSock2
allows new service providers to be created for intercepting
WinSock2 calls to the kernel socket system calls. An LSP is

compiled into a dynamically linked library. Upon installation,
any applications making WinSock2 calls links in both the
WinSock2 DLL and the LSP DLL. We use this mechanism
to implement Shield for intercepting application traffic above
the transport layer (see Figure 8).

TCP/IP ATM Others.

Windows Socket Kernel Mode Driver 
(AFD.SYS)

Shield Layered Service Provider 
(SHIELDLSP.DLL)

Winsock 2.0 (WS2_32.DLL)

Applications

K
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U
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Fig. 8. Shield Implementation using WinSock2 LSP

Our Shield LSP implements the architecture depicted in
Figure 4 with 10,702 lines of C++ code4. We employ
Flex [19] and Byacc [3] to parse the syntax of the Shield
policy language. And the Policy Loader calls the Byacc API
to obtain the syntax trees of the policy scripts.

We have used the vulnerabilities behind Slammer [30],
MSBlast [18], CodeRed [5], and twelve other vulnerabilities
from Microsoft security bulletin board to drive our design
and implementation. They are all input validation type of
vulnerabilities such as buffer overruns, integer overflow, or
malformed URLs. Slammer exploits a proprietary application
level protocol SSRP [30] on top of UDP. MSBlast exploits
RPC [25] over either TCP or UDP. And CodeRed uses
HTTP [7]. Other vulnerabilities exploit Telnet [21], SMB [28],
HTTP or RPC. We have also examined some other application
level protocols such as RTP [26] and SMTP [12] to design our
policy language. Once we obtained the protocol specification5

and the occurrence of the vulnerability in the corresponding
payload, writing Shield policy was easy.

IX. EVALUATIONS

A. Applicability of Shield

How applicable is Shield to real-world vulnerabilities?
Shield was designed to catch exploits in a wide variety of
application-level protocols, but there are several potential gaps
in its coverage:

• Vulnerabilities that result from bugs that are deeply
embedded in the application’s logic are difficult for Shield
to defend against without replicating that application
logic in the network. For example, browser-based vul-
nerabilities that can be exploited using HTML scripting
languages are difficult for Shield to prevent, since those
languages are so flexible that incoming scripts would

4This line count does not include the generated Flex and Byacc files.
5It should be easy for application vendors to produce Shield policies since

they have easy access to the protocol specifications.
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Number of Nature Worm- Shield-
Vuln. Exploitability Applicability

6 Local No No
24 Client No Hard
12 Server buffer overruns Yes Easy
3 Cross-site scripting No Hard
3 Server Denial-of-service No Hard

TABLE I

APPLICABILITY OF SHIELD FOR VULNERABILITIES OF MSRC OVER THE

YEAR 2003.

likely have to be parsed and run in simulation to discover
if they are in fact exploits.

• Even simple vulnerabilities that are exploitable by mal-
formed,network protocol-independentapplication objects
(such as files) are difficult for Shield to catch. For exam-
ple, a shield against otherwise simple buffer overruns in
application file formats would have to spot an incoming
file arriving over many different protocols. For file-based
vulnerabilities, vulnerability-specific anti-virus softwares
(rather than exploit-specific ones as being widely used
today) would be more appropriate for them.

• Application specific encryption poses a problem for
Shield as mentioned in Section I.

To assess the significance of these obstacles, we analyzed
the entire list of security bulletins published by the Microsoft
Security Response Center (MSRC) for the year 2003. Table I
summarizes our findings. Of the 49 bulletins, six described
vulnerabilities that were purely local, not involving a network
in any way. Of the rest, 24 described “client” vulnerabilities
(in the sense of requiring local user action on the vulnerable
machine–such as navigating to a malicious Website, or open-
ing an emailed application–to trigger), and the remaining 19
described server vulnerabilities (in the sense of being possible
to trigger via the network, from outside the machine).

The client vulnerabilities generally appear difficult to design
shields for. However, none of the client vulnerabilities are
likely to result in self-propagating worms, because they cannot
be exploited without some kind of user action upon the
browser. For example, seven involved application file formats.
Of the remainder, two were email client vulnerabilities, one
was a media player vulnerability, and the rest were found in the
browser, and hence invoked via HTML or client-side scripting.

Of the server vulnerabilities, twelve might conceivably
be exploitable by worms, under “ideal” conditions—i.e., the
server application being very widely deployed in an un-
protected, unpatched and unfirewalled configuration. The re-
mainder included three denial-of-service attacks, three ”cross-
site scripting” attacks, and a potential information disclosure.
These are not vulnerable to exploitation by worms.

Of the potentially worm-exploitable vulnerabilities, five
involved application protocols running over HTTP. The rest
involved specific application protocols—typically directly over
TCP or UDP—none of which appear inherently incompatible
to the Shield approach. Moreover, all twelve were based on

Client Server

Bind

Request

Bind_Ack

Response

Fig. 9. The RPC message exchanges between our clients and server for
throughput evaluation.

buffer overruns, and hence shield-applicable.
Thus, while many vulnerabilities may not appear to be

suitable for the Shield treatment, in fact the most threatening–
those prone to exploitation by worms–appear to be dispropor-
tionately Shield-compatible.

We also assessed the reliability of the patches associated
with our sample set of security bulletins. Of the patches
associated with the 49 bulletins, ten (including three repairing
potentially worm-exploitable vulnerabilities) were updated at
least once following their initial release. Eight of those (in-
cluding two involving wormable vulnerabilities) were updated
to mitigate reported negative side effects of the patch. (The
others were augmented with extra patches for legacy versions
of the product.) These side effects would likely have been
avoided had Shield been used in place of the patch since a
key advantage of shields over patches is its easy testability
(Section I).

Finally, with the exception of HTTP-related vulnerabilities,
no single application-level protocol exhibited more than RPC’s
three vulnerabilities during the entire year. Hence, apart from
the HTTP port, no port is likely to be burdened with com-
bining so many shields at a given time that the cumulative
performance costs of large numbers of shields become an issue
separate from the overhead of using Shield on a port in the
first place.

B. Application Throughput

To evaluate the impact of Shield on the application through-
put, we have devised the following experiment: We have
clients establishing simultaneous client-server RPC sessions
over TCP; for each session, the server sends 1 MB of data
back to each of its clients in the RPC response (Figure 9).
There are 1 server and n clients. The server is a Dell GX270
with Pentium 4 CPU 2.8GHZ and 512MB of RAM. The clients
and the server are connected via a 100Mb Ethernet switch. All
computers run Windows XP SP1.

To estimate the worse case impact, we used a policy that
examines every byte of the traffic on the server. We measure
the server’s output throughput with Shield LSP enabled and
disabled. Table II shows the result: the throughput with and
without Shield do not have significant differences in this
setting, hinting that our shield design and implementation do
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Number of clients Without Shield (Mbps/s) With Shield (Mbps/s)

10 86.51 86.20
15 86.57 86.36
20 86.66 86.20
50 86.48 85.86
100 86.67 86.24
150 85.92 86.36
200 86.06 81.70
500 84.27 82.29
1000 66.29 57.56

TABLE II

APPLICATION THROUGHPUT WITH AND WITHOUTSHIELD

not have significant impact on the performance of the existing
network protocol stack.

C. False Positives

As mentioned in Section VII-B, false positives come from
either the misunderstanding of the protocol state machine or
the differential treatment of an exploit in the application.
In this section, we evaluate the false positve nature of our
ShieldLSP implementation. We focus our attention to the
Shield we designed for Slammer [30] which exploits the SSRP
protocol of SQL Server 2000.

We obtained a stress test suite for SSRP from the vendor.
SSRP is a very simple protocol with only 12 message types.
The test suite contains a total of 36 test cases for exhaustive
testing of SSRP requests of various forms. Running this test
suite against our Shield, we did not observe any false postives.
Although this does not prove Shield being false positive-free,
it serves as an evidence of Shield’s low false positiveness.

X. RELATED WORK

Shield is a network-based system for defending against
vulnerability-exploiting attacks. Other network-based tools for
defending against attacks include firewalls and network in-
trusion detection systems (NIDS). Firewalls have a similar
function to Shield, but work in a much cruder way—rarely cus-
tomized in response to a particular vulnerability, for instance.
Moreover, they are usually not deployed on the end host, and
are unaware of application-level protocols (and may not even
have access to them—if, for example, traffic is encrypted).

NIDS systems, exemplified by Bro [20] and Snort [31],
monitor the network traffic and detect attacks of known
exploits. NIDS are usually more customized by application
than firewalls, but to deal with known exploits rather than
known vulnerabilities. Unlike Shield, NIDS is not on the
traffic forwarding path. Moreover, they focus on detection
rather than prevention of vulnerability exploits. For a more
reliable attack detection, “traffic normalizers” [27], [9], [8]
or “protocol scrubbers” [14] have been proposed to be used
on the forwarding path by eliminating potential ambiguities
before the traffic is seen by the monitor, removing evasion
opportunities. The functions of the traffic normalizer is similar
to that of Shield’s. However, the traffic normalizer mainly

deals with transport layer anomalies for the purpose of de-
tection, while Shield is run above the transport layer and
blocks the actual attack traffic. Shield has lower false postive
rates and false negative rates than NIDS because of Shield’s
vulnerability-specific nature.

Malicious traffic filters specific to HTTP traffic and web
servers [23] have also been proposed and deployed, such as
URLScan[6] for Microsoft IIS web servers. These are most
akin to Shield’s approach. In comparison, Shield is a generic
framework that supports any application level protocols.

The onsets of CodeRed [5], Slammer [30] and MSBlast [18]
in the past few years have set a new stage for worm defense
research. A number of papers [16], [32], [15], [33] have
characterized and analyzed the fast- and wide-spreading nature
and potential [34], [4] of modern-day worms. Moore et al [17]
further showed that for existing containment systems such as
firewalls and content filters to be successful against realistic
worms, they must react automatically in a matter of minutes
and must interdict nearly all Internet paths. This finding has
spurred research on fast worm signature generation such as
Earlybird [29]. The signatures can then be used by signature-
based network intrusion prevention systems (NIPS) to filter
traffic matching the signatures. Rate-limiting [35] is another
containment method that throttles the sending rate at an
infected end host. Another interesting worm detection mecha-
nism is through “honeypots” which are unpatched vulnerable
machines in the network with a number of IP addresses. Any
unsolicited outgoing traffic from the honeypots represents the
ocurrence of some attacks.

While most of the ongoing research copes with newexploit
detections and counteractions, Shield prevents any exploits of
knownvulnerabilities which have been the sources of major
damages so far. In the past, it has been assumed that removing
vulnerabilities has been a matter of patch distribution and
management [1], but recent research [24], [2] suggests that
patching is not a complete solution. Shield thus provides an
alternative or complement to the conventional approach of
removing vulnerabilities by patching in the network stack.

XI. CONCLUSIONS ANDFURTHER WORK

We have shown that network-based vulnerability-specific
filters are feasible to implement, with low false positive rates,
manageable scalability, and broad applicability across proto-
cols. There are, however, still a number of natural directions
for future research on Shield:

• Further experience writing shields for specific vulnerabil-
ities will better indicate the range of Shield’s applicability
and the adequacy of the Shield policy language. It may
also be possible to develop automated tools to ease Shield
policy generation.
For example, writing a shield policy currently requires
a fairly deep understanding of the protocol over which
the vulnerability is exploited. For protocols described
in a standard, formalized format, however, it should be
possible to build an automated tool that generates most of
the protocol-parsing portion of a shield policy. The rest of
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the task of writing the policy would still be manual, but it
is often relatively easy, since the vulnerability-exploiting
portion of the incoming traffic—say, an overly long field
that causes a buffer overrun—is often easy to identify
once the traffic has been parsed.

• Shield need not necessarily be implemented at the end
host. It may be preferable in some cases, from an admin-
istration or performance point of view, to deploy Shield
in a firewall or router, or even in a special-purpose box.
However, these alternate deployment options have yet to
be explored.

• One of the advantages of Shield is that shields can in
principle be tested in a relatively simple way, verifying
that some collection of traffic (test suites or real-world
traces) is not interfered with. Automating this process
would make the shield installation process even easier.

• Ensuring the secure, reliable and expeditious distribution
of Shields is crucial. While releasing a patch enables
attackers to reverse-engineer the patch to understand its
corresponding vulnerability, and thus to exploit it, Shield
makes reverse-engineering even easier since vulnerability
signatures are spelled out in Shield policies. Therefore,
Shield distribution and installation is in an even tighter
race with the exploit-designing hacker.

• It is possible that Shield’s design might prove useful when
applied to the virus problem, since some viruses exploit
a vulnerability in the application that is invoked when an
infected file is opened. Today, most anti-virus software is
signature-based, identifying specific exploits rather than
vulnerabilities. Incorporating shield-like technology into
anti-virus systems might allow them to protect against
generic classes of viruses that use a particular infection
method.
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