Shield: Vulnerability-Driven NetworkEFiItler_s for Preventing Known Vulnerability
xploits

Helen J. Wang
Chuanxiong Guo
Daniel R. Simon
Alf Zugenmaier
{helenw, t-chuguo, dansimon, a}fzZ® microsoft.com

Feburary, 2004

Technical Report
MSR-TR-2003-81

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Shield: Vulnerability-Driven Network Filters for
Preventing Known Vulnerability Exploits

Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier

Abstract— Software patching has not been an effective first-line « Disruption: Installing a patch typically involves reboot-
defense preventing_large-scale worm attacks,_ even when _p_a_ltches ing, at the very least, a particular host service, and possi-
had long been available for their corresponding vulnerabilities. bly an entire host system. An administrator for whom

Generally, people have been reluctant to patch their systems t d . fi ial theref
immediately, because patches are perceived to be unreliable Systém and servicé upume are crucial may thererore

and disruptive to apply. To address this problem, we propose be unable to tolerate the required service or system
a first-line worm defense in the network stack, usingshields— disruption.

vulnerability-specific, exploit-generic network filters installed in « Unreliability: Software patches are typically released as
end systems once a vulnerability is discovered and before the quickly as possible after a vulnerability is discovered, and

patch is applied. These filters examine the incoming or outgoing : . . .
traffic of vulnerable applications, and drop traffic that exploits there is therefore insufficient time to do more than cursory

vulnerabilities. Shields are less disruptive to install and uninstall, testing of the patch. For popular software programs, patch

easier to test for bad side effects, and hence more reliable than testing is inherently difficult and involves an exponential

traditional software patches. _ _ _ number of test cases due to their numerous versions,
In this paper, we show that this concept is feasible by describ- and their dependencies on various versions of libraries—

ing a prototype Shield framework implementation that filters

traffic at the transport layer. We designed a safe and restrictive which depend in turn on other libraries, and so on. Hence

language to describe vulnerabilities as partial state machines of patches can have serious undetected side effects in par-
the vulnerable application. The expressiveness of the language has ticular configurations, causing severe disruption and even
been verified by encoding the signatures of a number of known damage to the host systems to which they are applied.
vulnerabll!tfes. Our evalugitlon provides gwdgnce of Shield’s low Rather than risk such damage, administrators may prefer
false positive rate and impact on application throughput. An to do thei h h d ti . testi
examination of a sample set of known vulnerabilities suggests 0 (_) eir ovyn OVOUQ (an I_me-consumlng) __es I_ng,
that Shield could be used to prevent exploitation of a substantial or simply wait—accepting the risks of vulnerability in
fraction of the most dangerous ones. the meantime—until the patch has been vindicated by

widespread uneventful installation [2].
« Irreversibility: Most patches are not designed to be easily
One of the most urgent security problems facing adminis- reversible. Once it is applied, there is often no easy way
trators of networked computer systems today is the threat of of uninstalling the patch, short of restoring a backup
remote attacks on their systems over the Internet, based on version of the entire patched application (or even the
vulnerabilities in their currently running software. Particularly entire system). This factor exacerbates the risk associated
damaging have been self-propagating attacks, or “worms”, with applying a patch.
which exploit one or more vulnerabilities to take control of « Accident: An administrator may simply miss a patch
a host, then use that host to find and attack other hosts with announcement for some reason, and therefore be unaware
the same vulnerability. of it, or have received the announcement but neglected to
The obvious defense against such attacks is to prevent the act on it.
attack by repairing the vulnerability before it can be exploited.
Typically, software vendors develop and distribute reparative Because of these drawbacks to installing patches, methods
“patches” to their software as soon as possible after learniage being explored for mitigating vulnerabilities without in-
of a vulnerability. Customers can then install the patch arsfalling patches, or at least until a patch is determined to
prevent attacks that exploit the vulnerability. be safe to install. The goal is to address the window of
Experience has shown, however, that administrators oftenwdnerability between vulnerability disclosure and software
not install patches until long after they are made availablepatching. (This window is illustrated in Figure 1 as the gap
if at all [24]. As a result, attacks—including worms, suctbetween times7’’2 and 7'3.) A firewall, for example, can
as the widely publicized CodeRed [5], Slammer [30] ande configured to prevent traffic originating outside a local
MSBIast [18] worms—that exploit known vulnerabilities, fornetwork from reaching a vulnerable application, by blocking
which patches had been available for quite some time, hate appropriate port. By doing so, it can protect an application
nevertheless been quite “successful”, causing widespread d&mm attack from “outside”. Of course, blocking all traffic to
age by attacking the large cohort of still-vulnerable hosts. a port is a crude measure, preventing the application from
There are several reasons why administrators may fail fuinctioning at all across the firewall. Ideally, only traffic that
install software patches: exploits the vulnerability would be blocked, while all other

I. INTRODUCTION

New
Shield
Policy

Incoming or Outgoing

Network Traffic Shield
-

Shielded Traffic to

Processes or
Remote Hosts

Vulnerability
Signature
(Per Vulnerability)

paljddy yored

Time

—— paso|osip Ajpreanud Aijiqesauinp

—— poses|ay yored

Shield Network Filter

,:' —t— paso|osIp A|211gnd AYijICeIBUINA

TO T2 T3

Fig. 1. Time Windows: the scale of the X-axis does not reflect the actual Fig. 2. Shield Usage
time window duration. In fact, the time between any adjacent T's could, be

though it is typically much greater than 0; the time between T2 and T3 are

often in weeks or months.

protocols. To this end, we have designed a Shield framework

traffic would be allowed to pass through to the application. that lies between the application layer and the transport layer
In this paper, we explore the possibility of applying and offers shielding foanyappl_ication level protocols. Being _
intermediate “patch” in the network to perform this filtering?Pove the transport layer, Shield does not need to deal with
function, to delay (or perhaps in some cases even eliminatBpec-encrypted traffic. Encrypted traffic above the transport
the need for installing the software patch that removes the viiyer, such as SSL- or application-specific encrypted traffic are
nerability. Shieldis a system of vulnerability-specifiexploit- difficult for such a framework to handieNevertheless, it is
genericnetwork filters ghieldd installed either at the end host,Sensible to build respective Shield frameworks for commonly
firewall or edge router, that examines the incoming or outgoirged protocols such as SSL and RPC [25]. And the techniques
traffic of vulnerable applications and drops or modifies théescribed in this paper can be readily applied to them.
traffic according to the vulnerability signature. Shield operates!n our Shield framework, we model vulnerability signa-
at the application level protocol layeabove the transport fUres as a combination of partial protocol state machines
layer. For example, a shield (conceptually, there is one shiéigd vulnerability-parsing instructions for specific payloads
per vulnerability) designed to protect against a buffer overr¢ection Ill). For generality, we abstract out the generic
vulnerability would detect and drop traffic that resulted in aflements of application-level protocols in our Shield archi-
excessively long value being placed in the vulnerable buffégcture (Section IV). For flexibility and simplicity, we express
Shield differs from previous anti-worm strategies (Section)@ulnerability signatures and their countermeasures in a safe,
in attempting to remove a specific vulnerability directly, rathdstrictive, and yet expressive policy language, interpreted
than mitigate or counter the effects of its exploitation. by the Shield framework at runtime (Section VI). We also
Unlike software patches, shields can be deployed in tRaénimize Shield’s maintenance of protocol state for scalability,

network as well as in the network stack of the end host. Théd apply defensive design to ensure robustness (Section V-
are thus more separated from the vulnerable application—ahi We have implemented a preliminary Shield prototype
its wide variety of potential environment configurations—an@nd experimented with a number of known vulnerabilities,
therefore less likely to have unforeseen side effects. In partiBcluding the ones behind the (in)famous MSBlast, Slammer,
ular, their compatibility with normal operation is in principleand CodeRed worms (Section VIil). Our evaluation provides
relatively easy to test: since they operate only on netwoﬁ¥id?ncf3 of zero false positiyes and managea_ble.impact on
traffic, and are intended only to drop attack traffic, they can E@Plication throughput (Section IX). An examination of a
tested simply by exposing them to a suitably rich collection sample set of known vuIn_era}biIities suggests _that Sh_ield could
network traffic—such as a long trace of past network activit?,e used to prevent epr0|tat|_on of a substantial fraction of the
or a synthetic test suite of representative traffic—to verify thB10St dangerous ones (Section IX-A).

they would allow it all through unaffected.

In this paper, we focus our attention on the design and
implementation of an end host-based Shield system. TheFigure 2 gives an overview of basic Shield operations.
most efficient kind of end-host Shield would be positionedn end-host Shield Network Filter intercepts the network
at the highest protocol layer, namely the application lay#maffic, and examines and manipulates the traffic according
— assuming that hooks into that layer is available for traffi® the installed shield policies. Each shield policy specifies a
interception and manipulation. This way, any redundant megdlnerability signature, i.e., how to recognize network traffic
sage parsing would be avoided. For example, URLScan [t exploits a given vulnerability, as well as the actions to take
is essentially a Shield specific to Microsoft IS web server,

which uses IIS ISAPI extension package that offers hookslNonetheless, since Shield runs with the root priviledge on end hosts, it
IS possible for Shield to obtain encryption keys and perform decryption. In

for HTTP request interception and manipulations. HOwevghet the Shield framework would not incur heavy overhead for stream-based
most applications do not offer such extensilibiliy into theitiphers.

Il. OVERVIEW OF SHIELD USAGE

when such traffic is encountered. Conceptually, there is one Vulﬂsetré:bi“ty
Shield policy per vulnerability. When a new vulnerability is Machine ,
discovered, a shield designer—typically the vulnerable appli-

cation’s vendor—creates a Shield policy for the vulnerability
and distributes it to users running the applicatidmcoming

shields protect a host from potentially malicious incoming
traffic, in a similar fashion to a firewall, but with much more
application-specific knowledge. There can also cuggoing

shields filtering out traffic that triggers vulnerability-exploiting
responses back to the host itself, or protects other hosts on /

S2

the same local network from the host’s own vulnerability-
exploiting outgoing traffic. The latter use assumes that the
shield is installed at a higher privilege level than the malicious
or compromised sender of the vulnerability-exploiting traffic.
Otherwise, the sender could simply disable the shield before Fig. 3. Vulnerability Modeling
attacking the other hosts.

When receiving a shield policy, the end host enacts the
policy by installing the policy into the Shield system. Note that

this actio_n does not rgquire re-starting the vulnergble sgrvigguld cause damage in the figure). We call the partial
or rebooting the machine. Once a software patch is applieddy,co| state machine that leads to the pre-vulnerability state
the vulnerable application, eliminating the vulnerability, thg,eineranility state machinend the network event that can
corresponding policy can be removed from Shield. potentially contain the vulnerability theulnerable event

A Shield vulnerability signature essentially specifies the
vulnerability state machine and describes how to recognize

An essential part of the Shield design is the method e vulnerability in the vulnerable event. A Shield policy for
modeling and expressing vulnerability signatures.Shield a vulnerability includes both the vulnerability signature and the
vulnerability signature specifies all possible sequences dctions to take on recognizing an exploit of the vulnerability.
network events and specific payload characteristics that lgadSection VI, we detail our design of a policy language for
to any exploit of the vulnerability. (Note that not all vul- Shield policy specification.
nerabilities are suitable for shielding. This issue is discussedat a high level, a Shield for a vulnerability intercepts its
further in Section IX-A.) For example, the signature for th@pplication’s traffic and walks through the vulnerability state
vulnerability behind the Slammer worm [30] is the arrival ofnachine; when reaching the pre-vulnerability state, the Shield
a UDP packet at port 1434 with a size that exceeds the leg&amines the vulnerable event for possible exploits and takes
limit of the vulnerable buffer used in the Microsoft SQL servethe specified actions to protect against the exploits if they are
2000 implementation. More sophisticated vulnerabilities reyresent.
quire tracing a sequence of messages leading up to the actual
message that can potentially exploit the vulnerability. IV. SHIELD ARCHITECTURE

To express vulnerability signatures precisely, we have d&- Goals and Overview

yelo_ped a taxonomy for modeling vulnerabilities, as illustrated The objective of Shield is to emulate the part of the

in Figure 3. L) . application level protocol state machine that is relevant to its
Each application can be_ considered as a finite state machif§nerapilities and counter any exploits at runtime.

which we call theapphcatlon state machlnd)verlaymg on we identify three main goals for the Shield design:

top of the application state machine is tReotocol State L o L

Machine where the transitions are network event arrivals. 1 M|r_1|m|ze ?‘”d limit the amqunt of state_ maintained by

The protocol state machine is much smaller and simpler Shield Sh.|eld |;nust_be deS|gnfad "to re§|st a"ny resource

than the application state machine. And the application state consumption (‘Denial-Of-Service”, or .DOS) attacks.

machine can be viewed as a refinement of the protocol state :Zﬁgifoéi'r gnrglrizlt h%asrte:)lglsyeysaaiz?; tlitwse Z:t?s ;nc?tl?]tigh'

machine. That is, when zooming into a particular state of Shield onl q b DoS-resili h ;
the protocol state machine, there is a fine-grained application i i;,eshiglnd)i/ngee S to be as DoS-resilient as the service

state machine (e.g., enlarged sta® in the figure). Shield 9 L

is primarily concerned with the protocol state machine. We 2) Enough flexibility to support any application level pro-

define thepre-vulnerability stateas the state in the protocol tocol Fle'>.(|_b|I|ty must be de5|gneq mfto Shield so that

state machine at which receiving an exploitation network event vulnerabilities related t(.) any application Ievgl protocol
can be protected by Shield. Moreover, the Shield system

2Secure and expeditious distribution of Shield policies is an open research quign itself should be independent (_)f specific applic_a-
question by itself, and is out of the scope of this paper. tion level protocols, because the Shield system design

Embedded
Application
State Machine
in State S2

Protocol State Machine

Ill. VULNERABILITY MODELING

3)

Shield achieves goal 2 by applying the well-known principle
of “separating policy from mechanism”. Shield’'s mechanism
is generic, implementing operations common among all ap- MessageType Location
plication level protocols. Shield policies specify the varying
aspects of individual application level protocol design as weHaw byis| Application | Raw byte

and implementation would simply not scale if it were We first present the Shield mechanisms, including the
necessary to add individual application level protocolgolicy-enabling mechansims, in Section IV-B. Then, we
to the core system one at a time. present our policy language in Section VI.

Defensive designWe must design Shield in such a

way that Shield does not become an easier alternate Components and Data Structures

attack target. A robust Shield design must ensure thatin this section, we describe the essential components and

Shield’s state machine emulation is consistent with thfata structures of an end-host Shield system. Figure 4 depicts
actual state machine running in the vulnerable applicghe Shield architecture.

tion under all conditions. In other words, it is crucial
for us to defend against carefully crafted malicious — Snield Architecture
messages that may lead to Shield’s misinterpretation of
the application’s semantics.

Per-App
Vulnerability
State Machine |[«<—
Specification

Policy New
Loader Pol|cies

SessionID Location

Message boundary

State

: Session Bventfor || \jachine

as the corresponding vulnerabilities. This separation ensure®’| | Dispatcher | SpeciD ™l pispatcher | Session]| 0 o
that Shield has the flexibility to support any application-level
prOtOCOI. Interpret (Harfdler) CurState

We identify the following mechanisms as the necessary W» shield ceccion
generic elements of an application level protocol implemen- TearDownSession| Interpreter [~ 0 e | Statei
tation: (Less obvious generic elements will be explained
throughout the next section.) Fig. 4. Shield Architecture

Application level protocols between two parties (say,
a client and server) are implemented using finite state

automata according to some state machine design speciData Structures
fication.

To carry out state machine transitions, each party rnl“'StThere are two main data structures: #gplication vulner-

perform event ldentlflcatlo_n and session C_“SpatChmagoility state machine specificatiorfsSpec”) and the runtime
if the protocol allows multiple parallel sessions. (Fo ession states

transagtlon-bqsed protocols such as HTTP whgre a trans:l'he Policy Loadertransforms Shield policies into Specs.
action is a pair of request and response, a session has Hﬁ}

one packet for each direction). As a result, application, tiple vulnerability state machines for the same application
Ievelpmessa es must indicate é message t ' epa?nd S:esalr(t;:ncompiled into one “application vulnerability state machine
ID (if applicgble) ge yp épecification". Therefore, there is effectively one state machine

. specification per application. The purpose of a Spec is to
Implementations of datagram-based protocols must harP b bp Purp P

dle out-of-order application datagrams for its Sessionmétruct Shi_eld on how _to emulate th(_a appli_cation yulnerability
(See Section V-B.) State mach|.nes at runtime. As.ment|on_e.d in Section IV-A, the
Implementations .of application-level protocols WhosSpec contains .the state .machlne specification, port_num_b_er(s)

. for application identification, and event and session identifica-
messages cross packet boundaries must handle frag

. . MiBK information.
tation. (See Section V-C.) For event and session identification, a Spec indicates the

The policy specifies the following: location (i.e., offset and size) vector for the event type and

Application identificationhow to identify which packets session ID information in the packet, as well as the event type
are destined for which application. The port number useglues that are of concern to Shield. For application protocols
serves this purpose. that are not session-oriented, the session ID is left unspecified,
Event identification how to retrieve the message typeand each session consists of a single message. Sometimes,
from a received message. an application-level protocol may involve negotiating for a
Session identificatioriif applicable): how to determine dynamically selected port number as a session ID for further
which session a message belongs to. communications (e.g., FTP [22] and RTP [26]). In this case,
State machine specificatiothe states, events and tranthe new port number will be registered with Shield for applica-
sitions defining the protocol automaton. In our settingion identification, and the session ID is specified as “PORT",
the specification is for the vulnerability state machinéndicating that all communication on this port is considered as
a subgraph of a complete protocol state machine (saeingle session. Upon termination of the session, the dynamic
Section 1lI). port is de-registered with Shield.

To generalize event recognition and session dispatching to
text-based application level protocols such as HTTP [7] and

SMTP[12], we allow the units of “offset” and “size” to be
defined asvords(made of characters), in addition to bytes. For

example, in HTTP and SMTP, the message type is indicated

at offset 0, with a size of 1 word. In HTTP, this field contains
the request-line method, such as "GET” or "POST"; when it

determine which Spec to reference for the arrived data,
based on the port number. While an application-level

protocol may use many port numbers, each port number
corresponds to a single application. The Application

Dispatcher forwards the raw bytes and the identified

Spec to the Session Dispatcher for event and session
identification.

is an HTTP version, it represents a status message type [7]s¢ Session DispatcherOn obtaining the locations of the
And in SMTP, this field contains the SMTP command, such as session ID, message type, and message boundary marker
“MAIL", “RCPT”, or “DATA". Of course, we can generalize from the corresponding Spec, the Session Dispatcher
the unit even further using unit delimiters. For example, the extracts multiple messages (if applicable), recognizes the
unit deliminator for words is space while the unit delimiter event type and session ID, and then dispatches the event
for bytes is nothing. Nonetheless, we have not found this to to the corresponding state machine instance.
be necessary for a handful of protocols we have examined. « Runtime State Machine Instance (SMThere is one
Some application-level protocols (such as HTTP) allow state machine instance per session. Given a newly-
multiple application-level messages to be received in a single arrived event and the current state maintained by the
buffer. Therefore, in addition to the session ID and message corresponding session state, the SMI consults the Spec

type, the Spec also specifies theplication level message
boundary markerif any. For example, for HTTP, the message
boundary marker is CRLF CRLF; and for SMTP, it is CRLF.

regarding which event handler to invoke. (Event handlers
are included in Shield policies.) Then the SMI calls the
Shield Interpreter to interpet the event handler.

One key challenge is that application level messages maye Shield Interpreter: The Shield Interpreter interprets
not be received in their entirety (due to congestion control or the event handler, which specifies how to parse
application-specific socket usage) or in order (due to the use of the application-level protocol payload and examine it
a protocol such as UDP). Even the essential event-identifying for vulnerabilities. It also carries out actions like
parts of a message, such as event type and session ID, may not packet-dropping, session tear-down, registering a newly-
arrive together. We address this problem using DoS-resilient negotiated dynamic port with Shield, or setting the next
copying or buffering, which is detailed in Section V. state for the current SMI.

Note that thesessionis an important abstraction for packet
dispatching and as a unit of shielding, apart from socket
descriptors or host pairs. This is because one socket descriptor
may be used for multiple sequential sessions; and multiple
sockets may be used to carry out communications over one
session (e.g., FTP [22]). Similarly, one pair of hosts may Although Shield intercepts traffic above the transport layer
be carrying out multiple sessions. In these cases, the useanfl does not need to cope with network-layer fragments,
sessions eliminates any ambiguities on which packets belagach data arrival perceived by Shield dosst necessarily
to which session. represent a complete application level message that is in-

The other data structure in Shield &ession state At dependently interpretable by the application. The scattered
runtime, Shield maintains session state for each potentiadlyrivals of a single application level message could be due
vulnerable communication session. The session state inclutiied CP congestion control or some specific message-handling
the current state of the session and other context informatiomplementations of an application. For instance, a UDP Server
needed for shielding. may make multiple calls taecvfrom() to receive a single
application level message. In this case, Shield would recognize
multiple data arrivals for such messages. This complicates
session dispatching when session ID or message type are not
Now, we describe each Shield module in turn: received “in one shot”. It also complicates payload parsing in
« Policy Loader:Whenever a new Shield policy arrives oithe event handlers when not enough data has arrived for an

an old policy is modified, the Policy Loader integrates thevent-handler to finish parsing and checking. Here, we must

new policy with an existing Spec if one exists, or createsc@py (i.e., buffer and pass oart of the incompletely-arrived

new one otherwise. The Shield policy is expressed in tigata in the Shield system, and wait for the rest of the data to

Shield policy language. Policy loading involves syntagrive, before we can interpret it.

parsing and the syntax tree is also stored in the Spedn addition, we need tandex copy buffers so that later

for the purpose of run-time interpretation of shieldingrrivals of the same message for a given session can be stitched

actions (For details on the policy language design andgether properly. Although socket descriptors are not appro-

interpretation, please see Section VI). priate to identify sessions (Section IV-B), they are safe for
« Application DispatcherWhen raw bytes arrive at Shieldindexing copy buffers: while multiple sockets could be used
from a port, theApplication Dispatcheris invoked to for one session (e.g., FTP [22]), a single application message

V. IMPLEMENTATION ISSUES

Scattered Arrivals of an Application Message

Shield Modules

is typically 3 not scattered over multiple sockets—otherwisields of an application message into one field with a total
the application would not be able to interpret the parts of thgte count or word count, which will be the number of bytes
message due to the lack of information such as session IDasrwords to skip during parsing. When Shield concludes the
message type; similarly, although one socket descriptor coimthocence of a session, the goal of parsing its subsequent
be used for multiple parallel sessions, an application messagmplication-level messages is only to find the end of those
has to be received on a socket continuously to its completioressages. Hence, parsing for those messages can be ever
without interruptions from any other application messagefurther streamlined.
Therefore, we can applper-socketcopying for incomplete While specifying all application messages seems daunting,
message arrivals. if an application level protocol were specified in a standard and
We differentiate betweepre-session copyingndin-session formalized format (such as our policy language-like format—
copying Pre-session copyingappens when the session ID insee Section VI), we could automatically extract payload
formation has not completely arrived, whitesession copying format specifications and vulnerability state machines from
refers to the copying of the data whose session is knowthat format to our policy language. On the other hand, if a
A copy buffer is associated with a socket initially before &hield designer knows for a fact that scattered arrivals of a
session ID fully arrives. Once the session ID is receivechessage does not happen (e.g., single rather than multiple
the copy buffer is associated with both a socket and itgcvfrom() calls when receiving a single application message
respective session. Once a complete application messageihaUDPServer implementation), then only events involved in
been received, the copy buffer is de-allocated. the vulnerability state machine need to be specified.
We do not need to save the entire partially arrived messa%e,) o
but only the partially arrivedfield. For example, when a B- Out-of-Order Arrival of Application Datagrams
Session ID field has not arrived completely—say only 2 out When an application-level protocol runs on top of UDP, its
of 4 bytes—Shield only needs to remember that it is parsimiatagrams can arrive out of order. Applications that care about
the Session ID field, and saves the received two bytes orttye ordering of these datagrams will have a sequence number
Therefore, copying in Shield is small. field in their application level protocol headers. For Shield
Here, we introduce another runtime data structure that needsproperly carry out its exploit detection functions, Shield
to be maintained by Shielcbarsing state This state is per copies the out-of-order datagrams, and passes them on to the
application-level message, and it records which field of applications. This way, Shield can examine the packets in their
application message is being parsed, and how many bytes hiawended sequence. Shield sets the upper limit of the number
already been received for that field. The field has to beadd copied datagrams to be the maximum number of out-of-
“terminal” field rather than a structure of fields: For a fieldbrder datagrams that application level protocol can handle.
nested in other structures or an array, the field is represenkéehce, this maximum also needs to be expressed in the policy
as something like “someStructure.fields[i]". This restriction idescriptions, so does the sequence number location.
to minimize the amount of copying—copying for a terminal o]
field is typically small. C. Application Level Fragmentation
For a vulnerable application, we must maintain the state Shield runs on top of the transport layer. Hence, Shield
of the current field being parsed feach of the application does not need to deal with network-layer fragmentation and
messagesgvenwhen Shield had already determined that thee-assembly.
session to which the message belongs would not lead to anfjNonetheless, some application-level protocols use applica-
exploit. (Nonetheless, we do not maintain session state and tioa data units and perform application level fragmentation and
copy buffer for such sessions.) This is to avoid ambiguity: ie-assembly. For protocols on top of TCP, bytes are received
we do not keep the parsing state for the message, other partsrder. And for protocols on top of UDP, Shield copies their
of the message would be treated as new application messages-of-order datagrams to retain the correct packet sequence
Attackers could easily craft parts of a single applicatio(see the above section). Therefore receiving and processing
level message, send them separately, and cause inconsistergiphication level fragments is no different from processing
between the emulated state machine in Shield and the actpattially arrived data, as explained in Section V-A. However,
state machine in the application. the Spec needs to contain the location of the application-level
For Shield to be able to parse application messages, pardirggment ID in the message, so that a fragment is not treated
instructions (or payload formats) for all message types ab an entire message event.
an application must be specified to Shield through policy
descriptions. Therefore, payload formats are also part of the VI. SHIELD POLICY LANGUAGE
Spec. Fortunately, Shield does not need to parse all messagés this section, we present the Shield policy language which
in detail, but only the parts necessary for detecting the preseiigaised to describe the vulnerabilities and their countermea-
of an exploit. Therefore, we can aggressively bundle masyres for an application.

Figure 5, 6, 7 shows some examples of our policy language
SpTCP [10] proposes the use of TCP-v as an abstract of a connection which 9 P poticy guag

can use multiple sockets instead of one as in TCP. If pTCP were deploytp@de. They are policy scripts for the vulnerabilities b_ehind
Shield would use TCP-v to index the copy buffer instead. MSBIlast [18], Slammer [30], and CodeRed [5], respectively.

SHIELD (Name, Transport_Protocol, (port-list))
SHIELD (Vulnerability_Behind_MSBlast, TCP, (135, 139, 445))

where to retrieve SESSION_ID and MSG_TYPE from
SESSION_ID_LOCATION = (12, 4);
MSG_TYPE_LOCATION = (2, 1);

INITIAL_STATE S_WaitForRPCBiInd;
FINAL_STATE S_Final;

STATE S_WaitForRPCBindAck;

STATE S_WaitForRPCAlterContextResponse;
STATE S_WaitForRPCRequest;

STATE S_WaitForSessionTearDown;

EVENT eventName = (<eventTypeValue>, <direction>)
EVENT E_RPCBind = (0x0B, INCOMING);
EVENT E_RPCBindAck = (0XOC, OUTGOING);

EVENT E_RPCBindNak = (0xOD, OUTGOING);

EVENT E_RPCAlterContext = (OxOE, INCOMING);

EVENT E_RPCAlterContextResponse = (0xOF, OUTGOING);
EVENT E_RPCRequest = (0x0, INCOMING);

EVENT E_RPCShutdown = (0x11, OUTGOING);

EVENT E_RPCCancel = (0x12, INCOMING);

EVENT E_RPCOrphaned = (0x13, INCOMING);

STATE_MACHINE = {

(State, Event, Handler),

(S_WaitForRPCBind, E_RPCBind, H_RPCBind),
(S_WaitForRPCBIndAck, E_RPCBindAck, H_RPCBindAck),
(S_WaitForRPCRequest, E_RPCRequest, H_RPCRequest),

g

payload parsing instruction for P_Context
PAYLOAD_STRUCT {

Vulnerability behind Slammer
SHIELD (VulnerabilityBehind_Slammer, UDP, (1434))

0 offset, size of 1 byte
MSG_TYPE_LOCATION = (0, 1);

INITIAL_STATE S_WaitForSSRPRequest;
FINAL_STATE S_Final;

MsgType = 0x4
EVENT E_SSRP_Request = (0x4, INCOMING);

STATE_MACHINE = {
(S_WaitForSSRPRequest, E_SSRP_Request, H_SSRP_Request),
b

HANDLER H_SSRP_Request (DONT_CARE) {
COUNTER legalLimit = 128;
MSG_LEN returns legalLimit + 1 when legalLimit is exceeded
COUNTER ¢ = MSG_LEN (legalLimit);
IF (¢ > legalLimit)
DROP;
RETURN (S_FINAL);

Fi
RETURN (S_Final);

Fig. 6. Policy description of the vulnerability behind Slammer [30]

Shield for vulnerability behind CodeRed
SHIELD(CodeRed, TCP, (80))

SKIP BYTES(6) dummy1,
BYTES(1) numTransferContexts, INITIAL_STATE S_WaitForGetRequest;
SKIP BYTES(1) dummy2, FINAL_STATE S_Final;
BYTES(16) UUID_RemoteActivation,
SKIP BYTES(4) version, #
SKIP BYTES(numTransferContexts * 20) allTransferContexts, MSG_TYPE_LOCATION= (0, 1) WORD;
} P_Context;

MSG_BOUNDARY = "\r\n\r\n";
payload parsing instruction for P_RPCBind

PAYLOAD_STRUCT { EVENT E_GET_REQUEST = ("GET", INCOMING);
SKIP BYTES(24) dummy1,
BYTES(1) numContexts, STATE_MACHINE = {
SKIP BYTES(3) dummy2, (S_WaitForGetRequest, E_GET_Request, H_Get_Request),
P_Context[numContexts] contexts, Y
} P_RPCBind; PAYLOAD_STRUCT {
WORDS(1) method,
HANDLER H_S_RPCBind (P_RPCBind) WORDS(1) URI,
{ BYTES(REST) dummy2,
if invoking the RemoteActivation RPC call } P_Get_Request;
IF (>>P_RPCBind.contexts[0] == 0xB84A9F4D1C7DCF11861E0020AF6E7C57)
RETURN (S_WaitForRPCBindAck); HANDLER H_Get_Request (P_Get_Request) {
Fl COUNTER legalLimit = 239;
RETURN (S_Final); COUNTER ¢ = 0;
’ # \2(. *)$ is the regular expression to retrieve the
HANDLER H_RPCBindAck (P_RPCBindAck) # query string in the URI
{ # MATCH_STR_LEN returns legalLimit + 1 when legalLimit is exceeded
RETURN (S_WaitForRPCRequest); ¢ = MATCH_STR_LEN (>>P_Get_Request.URI, "\?(. *)$", legalLimit);
: IF (c > legalLimit)
Exploit!
HANDLER H_RPCRequest (P_RPCRequest) TEARDOWN_SESSION;
RETURN (S_FINAL);
IF (>>P_RPCRequest.bufferSize > 1023) Fl
TEARDOWN_SESSION; RETURN (S_FINAL);
PRINT (“MSBlast!"); %

since other RPC requests can come as well
RETURN (S_Final);

;IETURN (S_WaitForSessionTearDown); Fig. 7. Policy description of the vulnerability behind CodeRed [5]
h

... other PAYLOAD_STRUCTs and Handlers not included here ...

PAYLOAD _STRUCT definitions in the figures). The role of
Fig. 5. Excerpt from the policy description of the vulnerability behin ; i ; ;
MSBlast [18] %he hr_;m_dler is to examine the packet payload and pinpoint any

exploit in the current packet payload, or to record the session

context that is needed for a later determinination of exploit

) o _occurrence. To examine a packet, a handler needs to follow
There are two parts of the policy specification in the Shiele policy’s payload parsing instructions.

language. The first part includes states, events, state machinghen a policy is loaded, the Policy Loader parses the syntax
transitions, and generic application level protocol informatiogk the handlers and the payload parsing instructions, and stores

such as ports used, the locations of the event type, Sessi9f syntax tree in the Spec for run-time interpretation.
ID, sequence number or fragment ID in a packet, and the

message boundary marker. This part of the policy specificatin Payload Specification

is loaded into the Application Vulnerability State Machine The PAYLOAD.STRUCT definitions specify how to parse
Specification (Spec) directly by the Policy Loader (Figure 43n application-level message. Shield needs not parse out all
and is independent of runtime conditions. the fields of a payload as in the actual applications, but only
The second part of the policy specification is for runneeds to parse the fields relevant to the vulnerability. We allow
time interpretation during exploit checking. This includes thihe policy writers to simplify payload parsing by clustering
handler specification and payload parsing instructions (i.@significant fields together as a single dummy field of the

required number of bytes (e.g., dummyl field oRPCBind the next state the session should be in. The specialized for-
in Figure 5). Such fields are marked as skippable duringops are more of a syntax sugar for parsing iterative payload
parsing though the keyword K1P so that no copy buffer structures such as array of items rather than traditional general-
is maintained for such fields (Section V-A). From examiningurpose for-loops. For example, given “FOR (item M
a number of application level protocols, we find that paylodgayload.itemArray){ ... }", the interpreter parses items of
parsing specification only needs to support a limited set tfe “itemArray” field of the “Payload” iteratively, according
types for fields including bytes of any size (i.e., BYTES(nunip the “Payload” definition, and along the way, performs some
where “num” could be a variable size or an expression)perations on the bytes representing each “item”. Note that the
words of any size (i.e., WORDS(num)) for text-based protdnterpreter does not keep state as we parse the items out of an
cols, (multi-dimensional) array of PAYLOAISTRUCT's, and array.
boolean. During handler interpretation, the current payload being
In a sense, our payload parsing specification for grarsed may not be completely received. In this case, we save
application-level protocol message is like the Network Dathe execution state of the handler as part of the session state
Representation (NDR) [25] layout of the RPC stub data ege that when new data arrives, the handler's execution can
pressed in Interface Definition Language (IDL) [25] definitionbe resumed. This is very much like call continuation. In
IDL provides syntax for describing structured data types amdir case, the continuation state includes a queue of current
values for RPC procedure call inputs and outputs; and NORndler statements being executed (because of potentially
provides a mapping of IDL data types onto octet streams [25jested statements) and the parsing state (Section V-A) for the
In fact, any application payload can be expressed in IDL-likgayload—that is, the current field of the payload being parsed,
syntax, then serialized into raw bytes with NDR-like encodingnd the bytes read for that field.
Therefore, we believe a payload specification like ours is The restrictive nature of our language makes it a safer
potentially generic enough to express any application paylodainguage than general-purpose languages. While our language
o is restrictive, we find it sufficient for all of the vulnerabilities
B. Handler Specification that we have worked with and the application level protocols
The Shield language for handler specification is very simplédiat we have examined. However, it is still evolving as we
and highly specialized for our purpose. Variables have onfjain experience from shielding more vulnerabilities.
two scopes: They are either local to a handler or “global” Our language is simpler than the Bro language [20] that
within a session across its handlers. There are only four dé&aused for scripting the security policies of the Bro Nework
types: BOOL for boolean, COUNTER for whole number, byténtrusion Detection System (NIDS). This is because Bro per-
arrays such as “BYTES(numBytes)”, and word arrays sudbrms network monitoring and intrusion detection for the net-
as “WORD(numWords)”. We also have built-in variables fowork layer and above of the network stack and also monitors
handlers to use, such as SESSION cross-application, cross-session interactions based on various
Built-in functions include DROP , TEARDOWMESSION, attack patterns. In contrast, Shield is only concerned with
length-based functions such as MSGN (Figure 6) and application-specific traffic passing over top of the transport
MATCH_STRLEN (Figure 7), and regular expression funcprotocols or even higher level protocols such as HTTP and
tions that may be needed for text-based protocols. DRG¥PC. Furthermore, a key advantage of the vulnerability-driven
drops a UDP packet while TEARDOWRSESSION closes approach of Shield over attack- or exploit-driven approachs
all sockets associated with a session. The regular expressanh as NDIS is that Shield does not need to consider attack
functions are data stream-based rather than string buffactivities before the vulnerable application is involved (as in,
based. That is, they must be able to cope with scatterfedl example, multi-stage attacks. Shield only needs to screen
message arrivals as well. Similarly, length functions are alloe traffic of particular vulnerable applications.
stream-based with a required parameter of “stop count” (e.g..On the other hand, our language is more complex than the
“legalLimit” in our example scripts in the figures) to facilitatedeclarative Click router configuration language [13] because it
the handling of buffer overrun-type of vulnerabilities. Whethas to cover more tasks than just configuration. Shield needs
the length reaches “stop count”, counting stops and returtasparse the payload and perform actions based on the runtime
“stop count™1. This way, Shield will not count and maintainevents.
state beyond what is necessary in the case of buffer-overrun
exploits.
The syntax “>payload” instructs Shield to parse the byte4- Scalability with Number of Vulnerabilties
that represent “payload” of the packet, according to the parsingin this section, we discuss how Shield scales with the
instruction defined for “payload” (i.e., there should be aumber of vulnerabilities on a machine.
definition: “PAYLOAD_STRUCT/{...} payload;” earlier inthe The number of Shields on an end host shootit grow
policy decription). The parsed fields of a PAYLOABTRUCT arbitrarily large, because Shields will presumably be removed
are treated as local variables for that handler. Within the hamhen its corresponding vulnerability is patched.
dler, we allow assignments, if-statements, special-purpose forAlso, Shields are application-specific, adding negligible
loops, and return-statements that exit the handler and indicade@srhead to applications to which they do not apply. He¢e,

VII. ANALYSIS

Shields for N different applications is equivalent to a singlecompiled into a dynamically linked library. Upon installation,
shield in terms of their effect on the performance of any singhny applications making WinSock2 calls links in both the
application. WinSock2 DLL and the LSP DLL. We use this mechanism

An application may have multiple vulnerabilities over timeto implement Shield for intercepting application traffic above
The state machines that model these vulnerabilities shotiet transport layer (see Figure 8).
preferably be merged into a single one. Otherwise, each state
machine must be traversed for each packet, resulting in linear Applications
overhead. When these vulnerabilities appear on disjoint paths
of the merged state machine, per-packet shield processing
overhead for them is almost equivalent to the overhead for Shield Layered Service Provider
just one vulnerability. For vulnerabilities that share the same (SHIELDLSP.DLL)
path in the state machine, however, shield overhead may be
cumulative. On the other hand, our data on vulnerabilities
presented in Section IX-A suggests that this cumulative effect
is not significant: For worm-exploitable vulnerabilities, no TCPI/IP ATM Others.
more than three vulnerabilities ever appeared over a single
application protocol throughout the whole year.

In any case, for vulnerable applications, the application
throughput with shield is, at worst, halved, since the network
traffic is processed at most twice —once in Shield and once inOur Shield LSP implements the architecture depicted in
the application. Nonetheless, our experiment over our Shigtyure 4 with 10,702 lines of C++ codé We employ
prototype indicates that the Shield’s impact on applicatidflex [19] and Byacc [3] to parse the syntax of the Shield
throughput is quite small (Section IX-B). policy language. And the Policy Loader calls the Byacc API
to obtain the syntax trees of the policy scripts.

We have used the vulnerabilities behind Slammer [30],

By design, shields are able to recognize and fitey traffic MSBIlast [18], CodeRed [5], and twelve other vulnerabilities
that exploits a specific vulnerability, and hence should ha#®m Microsoft security bulletin board to drive our design
very low false positives. However, false positives may arisehd implementation. They are all input validation type of
from incorrect policy specification due to misunderstanding @ulnerabilities such as buffer overruns, integer overflow, or
the protocol state machines or payload formats. Such incorregilformed URLs. Slammer exploits a proprietary application
policy specification can be debugged with stress test suilesel protocol SSRP [30] on top of UDP. MSBlast exploits
or simply by replaying a substantial application traffic traceRPC [25] over either TCP or UDP. And CodeRed uses
Trace replay at the application level is easy since it is npfTTP [7]. Other vulnerabilities exploit Telnet [21], SMB [28],
necessary to replay the precise transport protocol behaviorHTTP or RPC. We have also examined some other application

Another source of false positives may come from thevel protocols such as RTP [26] and SMTP [12] to design our
application behavior upon receiving an exploit event. Theolicy language. Once we obtained the protocol specific&tion
application state machine embedded at that state may oahd the occurrence of the vulnerability in the corresponding
trigger the vulnerable code based on the local machine settjgagyload, writing Shield policy was easy.
or some runtime conditions. While such information can also
be incorporated in Shield, it is difficult to generalize such IX. EVALUATIONS
application-specific implementation details to simple and safe Applicability of Shield
policy language constructs. For the vulnerabilities with which H

we have experimented. we have not observed hf ow applicable is Shield to real-world vulnerabilities?
€ have experimented, we have not observed suc Elgl%eld was designed to catch exploits in a wide variety of
positives (Section IX-C).

application-level protocols, but there are several potential gaps

VIII. | MPLEMENTATION in its coverage:
p Vulnerabilities that result from bugs that are deeply

Winsock 2.0 (WS2_32.DLL)

1asn

Windows Socket Kernel Mode Driver
(AFD.SYS)

EIIEN

Fig. 8. Shield Implementation using WinSock2 LSP

B. False Positives

We have prototyped an end host-based Shield system o) SN i e -
Microsoft Windows XP. In particular, we have implemented ~€mbedded in the application's logic are difficult for Shield
Shield as a Microsoft WinSock2 Layered Service Provider [© defend against without replicating that application
(LSP) [11]. WinSock2 API is the latest socket programming ~ 109ic in the network. For example, browser-based vul-
interface for network applications on Windows. At runtime, ~ Nerabilities that can be exploited using HTML scripting
these network applications link in the appropriate socket |anguages are difficult for Shield to prevent, since those
functions from WinSock2 dymamically linked library (DLL) ~ |anguages are so flexible that incoming scripts would
upon socket function calls. The LSP mechanism in WmSOCkZ“This line count does not include the generated Flex and Byacc files.

a"_OWS new service prOV|derS to be created for Interceptm_g5lt should be easy for application vendors to produce Shield policies since
WinSock2 calls to the kernel socket system calls. An LSP tisey have easy access to the protocol specifications.

10

Number of | Nature Worm- Shield- Client Server
Vuln. Exploitability | Applicability
6 Local No No | Bind
24 Client No Hard T
12 Server buffer overruns | Yes Easy Bind_Ack __—
3 Cross-site scripting No Hard -
3 Server Denial-of-servicd No Hard il
I Request
TABLE | S
Response __—
APPLICABILITY OF SHIELD FOR VULNERABILITIES OF MSRCOVER THE
YEAR 2003.

Fig. 9. The RPC message exchanges between our clients and server for
throughput evaluation.

likely have to be parsed and run in simulation to discover
if they are in fact exploits.

« Even simple vulnerabilities that are exploitable by makuffer overruns, and hence shield-applicable.
formed,network protocol-independeapplication objects ~ Thus, while many vulnerabilities may not appear to be
(such as files) are difficult for Shield to catch. For exansuitable for the Shield treatment, in fact the most threatening—
ple, a shield against otherwise simple buffer overruns those prone to exploitation by worms—appear to be dispropor-
application file formats would have to spot an incomingionately Shield-compatible.
file arriving over many different protocols. For file-based We also assessed the reliability of the patches associated
vulnerabilities, vulnerability-specific anti-virus softwaresvith our sample set of security bulletins. Of the patches
(rather than exploit-specific ones as being widely usesociated with the 49 bulletins, ten (including three repairing

today) would be more appropriate for them. potentially worm-exploitable vulnerabilities) were updated at
« Application specific encryption poses a problem foleast once following their initial release. Eight of those (in-
Shield as mentioned in Section |. cluding two involving wormable vulnerabilities) were updated

To assess the significance of these obstacles, we analyi#ednitigate reported negative side effects of the patch. (The
the entire list of security bulletins published by the Microsofthers were augmented with extra patches for legacy versions
Security Response Center (MSRC) for the year 2003. Tabl€f| the product.) These side effects would likely have been
summarizes our findings. Of the 49 bulletins, six describeé¥yoided had Shield been used in place of the patch since a
vulnerabilities that were purely local, not involving a networlkey advantage of shields over patches is its easy testability
in any way. Of the rest, 24 described “client’ vulnerabilitie§Section 1).

(in the sense of requiring local user action on the vulnerableFinally, with the exception of HTTP-related vulnerabilities,
machine—such as navigating to a malicious Website, or opél single application-level protocol exhibited more than RPC'’s
ing an emailed application—to trigger), and the remaining 19ree vulnerabilities during the entire year. Hence, apart from
described server vulnerabilities (in the sense of being possifi@ HTTP port, no port is likely to be burdened with com-
to trigger via the network, from outside the machine). blnlng SO many shields at a given time that the cumulative

The client vulnerabilities generally appear difficult to desigRerformance costs of large numbers of shields become an issue
shields for. However, none of the client vulnerabilities argéeparate from the overhead of using Shield on a port in the
likely to result in self-propagating worms, because they canrféét place.
be exploited without some kind of user action upon the o
browser. For example, seven involved application file formats: Application Throughput
Of the remainder, two were email client vulnerabilities, one To evaluate the impact of Shield on the application through-
was a media player vulnerability, and the rest were found in tipeit, we have devised the following experiment: We have
browser, and hence invoked via HTML or client-side scriptinglients establishing simultaneous client-server RPC sessions

Of the server vulnerabilities, twelve might conceivablpver TCP; for each session, the server sends 1 MB of data
be exploitable by worms, under “ideal” conditions—i.e., théack to each of its clients in the RPC response (Figure 9).
server application being very widely deployed in an urnFhere are 1 server and n clients. The server is a Dell GX270
protected, unpatched and unfirewalled configuration. The mgith Pentium 4 CPU 2.8GHZ and 512MB of RAM. The clients
mainder included three denial-of-service attacks, three "crossid the server are connected via a 100Mb Ethernet switch. All
site scripting” attacks, and a potential information disclosureomputers run Windows XP SP1.

These are not vulnerable to exploitation by worms. To estimate the worse case impact, we used a policy that

Of the potentially worm-exploitable vulnerabilities, fiveexamines every byte of the traffic on the server. We measure
involved application protocols running over HTTP. The reshe server’s output throughput with Shield LSP enabled and
involved specific application protocols—typically directly ovedisabled. Table Il shows the result: the throughput with and
TCP or UDP—none of which appear inherently incompatibleithout Shield do not have significant differences in this
to the Shield approach. Moreover, all twelve were based eptting, hinting that our shield design and implementation do

11

Number of clients] Without Shield (Mbps/s)[With Shield (Mbps/s)| deals with transport layer anomalies for the purpose of de-

10 86.51 86.20 : : . .
15 8657 86.36 tection, while Shield is run abov'e the transport layer apd
20 86.66 86.20 blocks the actual attack traffic. Shield has lower false postive
50 86.48 85.86 rates and false negative rates than NIDS because of Shield’s
1(5)8 gg'g; gg'gg vulnerability-specific nature.
500 56.06 8170 Malicious traffic filters specific to HTTP traffic and web
500 84.27 82.29 servers [23] have also been proposed and deployed, such as
1000 66.29 57.56 URLScan[6] for Microsoft 1IS web servers. These are most
TABLE I akin to Shield’s approach. In comparison, Shield is a generic

framework that supports any application level protocols.

The onsets of CodeRed [5], Slammer [30] and MSBlast [18]
in the past few years have set a new stage for worm defense
research. A number of papers [16], [32], [15], [33] have

not have significant impact on the performance of the existm@aracterized and analyzed the fast- and wide-spreading nature

APPLICATION THROUGHPUT WITH AND WITHOUTSHIELD

network protocol stack. and potential [34], [4] of modern-day worms. Moore et al [17]
further showed that for existing containment systems such as
C. False Positives firewalls and content filters to be successful against realistic

A tioned in Section VII-B. fal ii ¢ worms, they must react automatically in a matter of minutes
S mentioned In Section VI-B, 1alS€ POsIlVES come oM,y 1y st interdict nearly all Internet paths. This finding has

either the misunderstanding of the protocol state maChmescHurred research on fast worm signature generation such as

the differential treatment of an exploit in the appl'catlonEarlybird [29]. The signatures can then be used by signature-

In this section, we evaluate the false positve nature of 0 Ssed network intrusion prevention systems (NIPS) to filter

ShieldLSP implementation. We focus our attention to tI} ffi - - L .
: . . . ic matching the signatures. Rate-limiting [35] is another
Shield we designed for Slammer [30] which exploits the SS ontainment method that throttles the sending rate at an

protocol of SQL Server 2000. infected end host. Another interesting worm detection mecha-

We obtained a stress test suite for SSRP from the vendr%m is through “honeypots” which are unpatched vulnerable

SSRP is a very simple protocol with only 12 message typ(:T‘.ﬁachines in the network with a number of IP addresses. Any

The. test suite contains a total Of 36 test cases fo_r eXh‘?IUStt'J\f?solicited outgoing traffic from the honeypots represents the
tespng of SSRP requests of various forms. Running this .t rrence of some attacks.
suite agamsj our Shield, we did npt obsgrve any falsg .postlvesWh”e most of the ongoing research copes with rexploit
Although this does_ not prove S.h'eld being false pp?'t've'freaetections and counteractions, Shield prevents any exploits of
it serves as an evidence of Shield’s low false positiveness. o\ vulnerabilities which have been the sources of major
damages so far. In the past, it has been assumed that removing
vulnerabilities has been a matter of patch distribution and
Shield is a network-based system for defending agaimatinagement [1], but recent research [24], [2] suggests that
vulnerability-exploiting attacks. Other network-based tools fgratching is not a complete solution. Shield thus provides an
defending against attacks include firewalls and network ialternative or complement to the conventional approach of
trusion detection systems (NIDS). Firewalls have a similaemoving vulnerabilities by patching in the network stack.
function to Shield, but work in a much cruder way—rarely cus-
tomized in response to a particular vulnerability, for instance.
Moreover, they are usually not deployed on the end host, andVe have shown that network-based vulnerability-specific
are unaware of application-level protocols (and may not evéiliers are feasible to implement, with low false positive rates,
have access to them—if, for example, traffic is encrypted). manageable scalability, and broad applicability across proto-
NIDS systems, exemplified by Bro [20] and Snort [31]cols. There are, however, still a number of natural directions
monitor the network traffic and detect attacks of knowfPr future research on Shield:
exploits NIDS are usually more customized by application « Further experience writing shields for specific vulnerabil-
than firewalls, but to deal with known exploits rather than ities will better indicate the range of Shield’s applicability
known vulnerabilities. Unlike Shield, NIDS is not on the and the adequacy of the Shield policy language. It may
traffic forwarding path. Moreover, they focus on detection also be possible to develop automated tools to ease Shield
rather than prevention of vulnerability exploits. For a more policy generation.
reliable attack detection, “traffic normalizers” [27], [9], [8] For example, writing a shield policy currently requires
or “protocol scrubbers” [14] have been proposed to be used a fairly deep understanding of the protocol over which
on the forwarding path by eliminating potential ambiguities the vulnerability is exploited. For protocols described
before the traffic is seen by the monitor, removing evasion in a standard, formalized format, however, it should be
opportunities. The functions of the traffic normalizer is similar ~ possible to build an automated tool that generates most of
to that of Shield’s. However, the traffic normalizer mainly the protocol-parsing portion of a shield policy. The rest of

X. RELATED WORK

XI. CONCLUSIONS ANDFURTHER WORK

12

the task of writing the policy would still be manual, but it
is often relatively easy, since the vulnerability-exploiting
portion of the incoming traffic—say, an overly long field
that causes a buffer overrun—is often easy to identify
once the traffic has been parsed.

« Shield need not necessarily be implemented at the erld
host. It may be preferable in some cases, from an admin-
istration or performance point of view, to deploy Shield[3]
in a firewall or router, or even in a special-purpose boxL
However, these alternate deployment options have yet {g
be explored. [6]

« One of the advantages of Shield is that shields can iP7]
principle be tested in a relatively simple way, verifying
that some collection of traffic (test suites or real-world[g]
traces) is not interfered with. Automating this process
would make the shield installation process even easier.

« Ensuring the secure, reliable and expeditious distributio)
of Shields is crucial. While releasing a patch enables
attackers to reverse-engineer the patch to understand its
corresponding vulnerability, and thus to exploit it, Shielgho)
makes reverse-engineering even easier since vulnerability
signatures are spelled out in Shield policies. Thereforﬁl]

Shield distribution and installation is in an even tighter
race with the exploit-designing hacker.

(12]

« Itis possible that Shield’s design might prove useful whelA®!
applied to the virus problem, since some viruses exploit

a vulnerability in the application that is invoked when an

infected file is opened. Today, most anti-virus software [$4]
signature-based, identifying specific exploits rather thq{\s]

vulnerabilities. Incorporating shield-like technology into

anti-virus systems might allow them to protect agains{
generic classes of viruses that use a particular infectib!

method.

(17]

XIl. ACKNOWLEDGEMENT

(18]

(19]

Jon Pincus has given us insightful and constant advi

since the idea formation stage of the Shield project. Jay
Lorch gave us many thoughtful critiques on the first drafi]

of this paper. Many Microsoft colleagues from the produ
side have graciously helped us with understanding vario

L

aspects of many vulnerabilities from the Microsoft Securits3]

Bulletin. They include: Tahsin Erdogan, Mike Howard, Kamen
Moutafov, Riyaz Pishori, Yong Qu, Jiri Richter, David Ross,

Chris Walker, Nengwu Zhu. We have also obtained and learnpa
how to use stress test suites for a number of application level

protocols from our product group colleagues, they are: An

REFERENCES

1] Mohd A. Bashar, Ganesh Krishnan, Markus G. Kuhn, Eugene H.

Spafford, and S. S. Wagstaff Jr. Low-Threat Security Patches and Tools.
In IEEE International Conference on Software Maintengn©etober
1997.

Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle, and Chris
Wright. Timing the application of security patches for optimal uptime.
In LISA XV| November 2002.

Byacc. http://dickey.his.com/byacc/byacc.html.

4] Z. Chen, L. Gao, and K. Kwiat. Modeling the Spread of Active Worms.

In Infocomm 2003.

Microsoft Security Bulletin MS01-033, November 2003.
Microsoft Corp. URLScan Security
http://www.microsoft.com/technet/security/URLScan.asp.
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.January 1997.

Gregory R. Ganger, Gregg Economou, and Stanley M. Bielski. Finding
and Containing enemies within the walls with self-securing network
interfaces. Technical Report CMU-CS-03-109, Carnegie Mellon Uni-
versity, January 2003.

Mark Handley, Vern Paxson, and Christian Kreibich. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End Protocol
Semantics. InProceedings of USENIX Security Symposivkagust
2001.

Hung-Yun Hsieh and Raghupathy Sivakumar. A transport layer approach
for achieving aggregate bandwidths on multi-homed mobile hosts. In
ACM Mobicom September 2002.

Anthony Jones and Jim OhlundNetwork Programming for Microsoft
Windows Microsoft Publishing, 2002.

J. Klensin.RFC 2821 - Simple Mail Transfer ProtogoApril 2001.

Eddie Kohler, Bejie Chen, M. Frans Kaashoek, Robert Morris, and
Massimiliano Poletto. Programming language techniques for modular
router configurations. Technical Report LCS-TR-812, MIT Laboratory
for Computer Science, 2000.

G. Robert Malan, David Watson, and Farnam Jahanian. Transport and
application protocol scrubbing. IEEEE Infocomm 2000.

David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stu-
art Staniford, and Nicholas Weaver. Inside the Slammer Worm.
http://www.computer.org/security/vin4/jdwea.htm, 2003.

David Moore, Colleen Shannon, and Jeffery Brown. Code-Red: a case
study on the spread and victims of an Internet wormAGM Internet
Measurement Workshop (IMW3002.

David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Sav-
age. Internet Quarantine: Requirements for Containing Self-Propagating
Code. InProceedings of IEEE Infocgrmipril 2003.

Microsoft Security Bulletin MS03-026, September 2003.

Vern Paxson. Flex - a scanner generator - Table of Contents
http://www.gnu.org/software/flex/manual/.

Vern Paxson. Bro: A System for Detecting Network Intruders in Real-
Time. In Computer NetworksDec 1999.

J. Postel and J. ReynoldRFC 854 - Telnet Protocol Specificatioday
1983.

J. Postel and J. ReynoldRFC 765 - FILE TRANSFER PROTOCOL
(FTP), October 1985.

Valentin Razmov and Daniel Simon. Practical Automated Filter Genera-
tion to Explicitly Enforce Implicit Input Assumptions. IRroceedings of
17th Annual Computer Security Applications Conferemdawv Orleans,

LA, December 2001.

Eric Rescorla. Security holes... Who caresPceedings of USENIX
Security Symposiumfugust 2003.

Tool.

] DCE 1.1: Remote Procedure Call
] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob$®RC1889

Balakrishnan, Lie Lu, Jiri Richter, and Pavel Yatsuk. Stephen
Adams, Andrew Begel, and Zhe Yang offered us helpfi#7]
discussions on our policy language design and interpreter
implementation. Anthony Jones helped us with understandipg;
WinSock LSP programming model. This work also benefited
from our discussions with John Dunagan, Jitu Padhye, Stefd¥l

Savage, David Thaler, Nick Weaver, and Brian Zill. We are
thankful to everyone’s help.

13

(30]

RTP: A Transport Protocol for Real-Time Applicatiorgnuary 1996.
Umesh Shankar and Vern Paxson. Active Mapping: Resisting NIDS
Evasion Without Altering Traffic. IProceedings of IEEE Symposium
on Security and PrivagyMay 2003.

Richard Sharpe. Server message
http://samba.anu.edu.au/cifs/docs/what-is-smb.html.
Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. The
earlybird system for real-time detection of unknown worms. Technical
Report CS2003-0761, University of California at San Diego, 2003.
Microsoft security bulletin ms02-039, January 2003.

block.

[31]

(32

(33]

[34]

[35]

The Open Source Network Intrusion Detection System.
http://www.snort.org/.

Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to Own
the Internet in Your Spare Time. IRroceedings of the 11th USENIX
Security Symposiumugust 2002.

Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert
Cunningham. Large Scale Malicious Code: A Research Agenda.
http:/iwww.cs.berkeley.ediiweaver/largescalemaliciouscode.pdf,

2003.

Nick Weaver. The potential for very fast internet plagues.
http://www.cs.berkeley.edu/nweaver/warhol.html.

Matthew M. Williamson. Throttling viruses: Restricting propagation to
defeat malicious mobile code. Technical Report HPL-2002-172, HP
Labs Bristol, 2002.

14

