
Shield: Vulnerability-Driven Network Filters for Preventing
Known Vulnerability Exploits

Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier
{helenw, t-chuguo, dansimon, alfz}@microsoft.com

Microsoft Research

ABSTRACT
Software patching has not been effective as a first-line de-
fense against large-scale worm attacks, even when patches
have long been available for their corresponding vulnerabil-
ities. Generally, people have been reluctant to patch their
systems immediately, because patches are perceived to be
unreliable and disruptive to apply. To address this prob-
lem, we propose a first-line worm defense in the network
stack, using shields — vulnerability-specific, exploit-generic
network filters installed in end systems once a vulnerability
is discovered, but before a patch is applied. These filters
examine the incoming or outgoing traffic of vulnerable ap-
plications, and correct traffic that exploits vulnerabilities.
Shields are less disruptive to install and uninstall, easier to
test for bad side effects, and hence more reliable than tra-
ditional software patches. Further, shields are resilient to
polymorphic or metamorphic variations of exploits [43].

In this paper, we show that this concept is feasible by de-
scribing a prototype Shield framework implementation that
filters traffic above the transport layer. We have designed
a safe and restrictive language to describe vulnerabilities as
partial state machines of the vulnerable application. The ex-
pressiveness of the language has been verified by encoding
the signatures of several known vulnerabilites. Our eval-
uation provides evidence of Shield’s low false positive rate
and small impact on application throughput. An examina-
tion of a sample set of known vulnerabilities suggests that
Shield could be used to prevent exploitation of a substantial
fraction of the most dangerous ones.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: [Invasive software, In-
formation flow controls]

General Terms
Security, Design, Languages, Performance vspace-0.3cm

Keywords
Worm Defense, Patching, Vulnerability Signature, Network
Filter, Generic Protocol Analyzer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04,Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

1. INTRODUCTION
One of the most urgent security problems facing adminis-

trators of networked computer systems today is the threat
of remote attacks on their systems over the Internet, based
on vulnerabilities in their currently running software. Par-
ticularly damaging have been self-propagating attacks, or
“worms”, which exploit one or more vulnerabilities to take
control of a host, then use that host to find and attack other
hosts with the same vulnerability.

The obvious defense against such attacks is to prevent
the attack by repairing the vulnerability before it can be ex-
ploited. Typically, software vendors develop and distribute
reparative “patches” to their software as soon as possible
after learning of a vulnerability. Customers can then install
the patch and prevent attacks that exploit the vulnerability.

Experience has shown, however, that administrators of-
ten do not install patches until long after they are made
available — if at all [33]. As a result, attacks — including
worms, such as the widely publicized CodeRed [6], Slam-
mer [40], MSBlast [24], and Sasser [35] worms — that exploit
known vulnerabilities, for which patches had been available
for quite some time, have nevertheless been quite “success-
ful”, causing widespread damage by attacking the large co-
hort of still-vulnerable hosts. In fact, more than 90% of the
attacks today are exploiting known vulnerabilities [1].

There are several reasons why administrators may fail to
install software patches:

• Disruption: Installing a patch typically involves re-
booting, at the very least, a particular host service,
and possibly an entire host system. An administrator
for whom system and service uptime are crucial may
therefore be unable to tolerate the required service or
system disruption.

• Unreliability: Software patches are typically released
as quickly as possible after a vulnerability is discov-
ered, and there is therefore insufficient time to do more
than cursory testing of the patch. For popular software
programs, patch (regression) testing is inherently dif-
ficult and involves an exponential number of test cases
due to the software’s numerous versions, and their de-
pendencies on various versions of libraries — which
depend in turn on other libraries, and so on.

In addition, a patch typically bundles a number of
software updates together with the security fix, fur-
ther complicating testing. (Such bundling is neces-
sary to prevent the number of branches in the state
of the software source code from exploding exponen-
tially.) Hence patches can have serious undetected side

effects in particular configurations, causing severe dis-
ruption and even damage to the host systems to which
they are applied. Rather than risk such damage, ad-
ministrators may prefer to do their own thorough and
time-consuming testing, or simply wait — accepting
the risks of vulnerability in the meantime — until the
patch has been vindicated by widespread uneventful
installation [2].

• Irreversibility: Most patches are not designed to be
easily reversible due to the ordering of changes that
have been made to the system. Once a patch is ap-
plied, there is often no easy way of uninstalling it, short
of restoring a backup version of the entire patched ap-
plication (or even the entire system). This factor ex-
acerbates the risk associated with applying a patch.

• Unawareness: An administrator may simply miss a
patch announcement for some reason, and therefore
be unaware of it, or have received the announcement
but neglected to act on it.

Because of the above drawbacks to installing patches, meth-
ods are being explored for mitigating vulnerabilities without
installing patches, or at least until a patch is determined to
be safe to install. The goal is to address the window of
vulnerability between vulnerability disclosure and software
patching. A firewall, for example, can be configured to pre-
vent traffic originating outside a local network from reach-
ing a vulnerable application, by blocking the appropriate
port. By doing so, it can protect an application from at-
tacks from “outside”. Of course, blocking all traffic to a port
is a crude measure, preventing the application from func-
tioning at all across the firewall. Exploit-signature-based
firewalls that string-match network traffic to known attack
patterns (using regular expressions, for example) are more
flexible [41], but metamorphic or polymorphic variations [43]
of the known exploits can easily undermine such filters. Fur-
thermore, such exploit signatures can only be obtained after
the onset of the attacks themselves, and for fast-spreading
worms, it is challenging to detect, extract, and distribute
attack signatures in a timely matter [39, 42]. Ideally, pre-
vention mechanisms would be deployed well before attacks
occur, and even before the public disclosure of a vulnera-
bility, and only traffic that exploits the vulnerability would
be blocked, while all other traffic would be allowed to pass
through to the application.

In this paper, we explore the possibility of applying an
intermediate “patch” in the network stack to perform this
filtering function, to delay (or perhaps in some cases even
eliminate) the need for installing the software patch that re-
moves the vulnerability. Shield is a system of vulnerability-
specific, exploit-generic network filters (shields) installed at
the end host, that examines the incoming or outgoing traffic
of vulnerable applications and corrects the traffic according
to the vulnerability signature. Shield operates at the appli-
cation protocol layer, above the transport layer. For exam-
ple, a shield (conceptually, there is one shield per vulnera-
bility) designed to protect against a buffer overrun vulnera-
bility would detect and drop or truncate traffic that resulted
in an excessively long value being placed in the vulnerable
buffer. Shield differs from previous anti-worm strategies (see
Section 9) in attempting to remove a specific vulnerability
directly before the vulnerability disclosure time, rather than
mitigating or countering the effects of its exploitation at at-
tack time.

Unlike software patches, shields are deployed in the net-
work stack of the end host. They are thus more separated
from the vulnerable application — and its wide variety of
potential environment configurations — and therefore less
likely to have unforeseen side effects. In particular, their
compatibility with normal operation is in principle relatively
easy to test: Since they operate only on network traffic, and
are intended only to drop attack traffic, they can be tested
simply by exposing them to a suitably rich collection of net-
work traffic — such as a long trace of past network activ-
ity, or a synthetic test suite of representative traffic — to
verify that they would allow it all through unaffected. Fur-
thermore, shields are non-disruptive and easily reversible.
Automatic installation of shields is therefore a technically
viable option.

The most efficient kind of end-host Shield would be po-
sitioned at the highest protocol layer, namely the applica-
tion layer — assuming that programmatic “hooks” into that
layer are available for traffic interception and manipulation.
This way, any redundant message parsing would be avoided.
For example, URLScan [7] is essentially a Shield specific to
Microsoft’s IIS web server, which uses the IIS ISAPI ex-
tension package’s hooks for HTTP request interception and
manipulation. However, most applications do not offer such
extensibility into their protocols. To this end, we have de-
signed a Shield framework that lies between the application
layer and the transport layer and offers shielding for any ap-
plication level protocols. Being above the transport layer,
Shield does not need to deal with IPSec-encrypted traffic.
Encrypted traffic above the transport layer, such as SSL-
[12] or application-specific encrypted traffic, are difficult for
such a framework to handle1. Nevertheless, it is sensible
to build the Shield framework to encompass commonly used
protocols such as SSL [12] and RPC [34], and the techniques
described in this paper can be readily applied to them.

In our Shield framework, we model vulnerability signa-
tures as a combination of partial protocol state machines
and vulnerability-parsing instructions for specific payloads
(Section 2). For generality, we abstract out the generic ele-
ments of application-level protocols into a generic protocol
analyzer in our Shield architecture (Section 3). For flexibil-
ity and simplicity, we express vulnerability signatures and
their countermeasures in a safe, restrictive, and yet expres-
sive policy language, interpreted by the Shield framework at
runtime (Section 5). We also minimize Shield’s maintenance
of protocol and message parsing state for scalability (Sec-
tion 4.1). In particular, Shield reconstructs vulnerability-
related application semantics by maintaining the relevant
protocol context of a communication session, and performs
application-message-based inspection rather than packet-level
inspection, as used by some Network Intrusion Detection or
Prevention Systems [41]. Packet-level inspection can be eas-
ily evaded or disturbed by attackers [32], resulting in both
false positives and false negatives. We have implemented a
preliminary Shield prototype and experimented with a num-
ber of known vulnerabilities, including the ones behind the
(in)famous MSBlast, Slammer, and CodeRed worms (Sec-
tion 7). Our evaluation provides evidence of zero false pos-
itives and manageable impact on application throughput
(Section 8). An examination of a sample set of known vul-

1Nonetheless, assuming Shield runs with root or administra-
tor privileges on end hosts, it would be possible for Shield to
obtain encryption keys and decrypt traffic itself. The result-
ing overhead should not be prohibitive as long as efficient
symmetric ciphers are used for the encryption.

nerabilities suggests that Shield could be used to prevent
exploitation of a substantial fraction of the most dangerous
ones (Section 8.1).

2. VULNERABILITY MODELING
AND SHIELD USAGE

An essential part of the Shield design is the method of
modeling and expressing vulnerability signatures. A Shield
vulnerability signature specifies all possible sequences of ap-
plication messages and specific payload characteristics that
lead to any remote exploit of the vulnerability. (Note that
not all vulnerabilities are suitable for shielding. This issue
is discussed further in Section 8.1.) For example, the signa-
ture for the vulnerability behind the Slammer worm [40] is
the arrival of a UDP packet at port 1434 with a size that
exceeds the legal limit of the vulnerable buffer used in the
Microsoft SQL server 2000 implementation. More sophisti-
cated vulnerabilities require tracing a sequence of messages
leading up to the actual message that can potentially exploit
the vulnerability.

S0

V4S3

S2S1

S5

S0

V4 S5

S2

Vulnerability
State

Machine

Protocol State Machine

Embedded
Application

State Machine
in State S2

Vulnerable
Event

Figure 1: Vulnerability Modeling

To express vulnerability signatures precisely, we have de-
veloped a taxonomy for modeling vulnerabilities, as illus-
trated in Figure 1. Each application can be considered as
a finite state machine, which we call the application state
machine. Overlaying the application state machine is the
Protocol State Machine, in which the transitions are appli-
cation message arrivals. The protocol state machine is much
smaller and simpler than the application state machine, and
the application state machine (e.g., enlarged state S2 in
the figure) can be viewed as a refinement of the protocol
state machine. As a network filter, Shield is primarily con-
cerned with the protocol state machine. We define the pre-
vulnerability state as the state in the protocol state machine
at which receiving an exploitation network event could cause
damage (v4 in the figure). We call the partial protocol state
machine that leads to the pre-vulnerability state the vulner-
ability state machine, and the message that can potentially
contain an exploit, the vulnerable event.

A Shield vulnerability signature essentially specifies the
vulnerability state machine and describes how to recognize
any exploits in the vulnerable event. A Shield policy for a
vulnerability includes both the vulnerability signature and
the actions to take on recognizing an exploit of the vulner-
ability. In Section 5, we detail our design of a language for
Shield policy specification.

When a new vulnerability is discovered, a shield designer
— typically the vulnerable application’s vendor — creates a
Shield policy for the vulnerability (conceptually, there is one

Shield policy per vulnerability) and distributes it to users
running the application as in anti-virus signature distribu-
tion and installation. Using this policy, Shield intercepts
its application’s traffic and walks through the vulnerability
state machine; when reaching the pre-vulnerability state,
the Shield examines the vulnerable event for possible ex-
ploits and takes the specified actions to protect against the
exploits if they are present.

Shields can protect a host from potentially malicious in-
coming traffic in a similar fashion to a firewall, but with
much more application-specific knowledge. In addition, shields
can filter out outgoing traffic that triggers malicious responses
back to the host itself, or protects other hosts on the same
local network from the host’s own vulnerability-exploiting
outgoing traffic. The latter use assumes that the shield is
installed at a higher privilege level than the malicious or
compromised sender of the vulnerability-exploiting traffic.
Otherwise, the sender could simply disable the shield before
attacking the other hosts.

Shield policies are active as soon as they are received by
end host Shield and do not require restarting the vulnera-
ble service or rebooting the system. Once a software patch
is applied to the vulnerable application, the corresponding
policy can be removed from Shield.

3. SHIELD ARCHITECTURE

3.1 Goals and Overview
The objective of Shield is to emulate the part of the ap-

plication level protocol state machine that is relevant to its
vulnerabilities with intercepted messages and counter any
exploits at runtime.

We identify three main goals for the Shield design:

1. Minimize and limit the amount of state maintained
by Shield: Shield must be designed to resist any re-
source consumption (“Denial-Of-Service”, or “DoS”)
attacks. Therefore, it must carefully manage its state
space. For an end-host-based Shield, the bar is not
high: Shield only needs to be as DoS-resilient as the
service it is shielding.

2. Enough flexibility to support any application level pro-
tocol: Flexibility must be designed into Shield so that
vulnerabilities related to any application level proto-
col can be protected by Shield. Moreover, the Shield
system design itself should be independent of specific
application level protocols, because the Shield system
design and implementation would simply not scale if
it were necessary to add individual application level
protocols to the core system one at a time.

3. Design Fidelity: We must design Shield in such a way
that Shield does not become an easier alternative at-
tack target. A robust Shield design must ensure that
Shield’s state machine emulation is consistent with the
actual state machine running in the vulnerable appli-
cation under all conditions. In other words, it is cru-
cial for us to defend against carefully crafted malicious
messages that may lead to Shield’s misinterpretation
of the application’s semantics.

Shield achieves goal 2 by applying the well-known princi-
ple of “separating policy from mechanism”. Shield’s mecha-
nism is generic, implementing operations common among all
application level protocols. Shield policies specify the vary-
ing aspects of individual application level protocol design as

well as the corresponding vulnerabilities. This separation
enables the flexibility of Shield to adapt to various applica-
tion level protocols.

We identify the following mechanisms as the necessary
generic elements of an application level protocol implemen-
tation: (Less obvious generic elements will be explained
throughout the next section.)

• Application level protocols between two parties (say, a
client and a server) are implemented using finite state
automata.

• To carry out state machine transitions, each party
must perform event identification and session dispatch-
ing. Session is the unit of communication that is mod-
eled by the protocol state machine. A session contains
one or more application messages and one or more pro-
tocol states. As a result, application-level messages
must indicate a message type and session ID when the
number of states exceeds one.

• Implementations of datagram-based protocols must han-
dle out-of-order application datagrams for their ses-
sions. (See Section 4.2.)

• Implementations of application-level protocols that al-
low message fragments must handle fragmentation. (See
Section 4.3.)

The policy specifies the following:

• Application identification: how to identify which pack-
ets are destined for which application. The service port
number typically serves this purpose.

• Event identification: how to extract the message type
from a received message.

• Session identification (if applicable): how to determine
which session a message belongs to.

• State machine specification: the states, events, and
transitions defining the protocol automaton. In our
setting, the specification is for the vulnerability state
machine, a subgraph of a complete protocol state ma-
chine (see Section 2).

We first present the Shield mechanisms, including the
policy-enabling mechansims, in Section 3.2. Then, we present
our policy language in Section 5.

3.2 Components and Data Structures
In this section, we describe the essential components and

data structures of an end-host Shield system. Figure 2 de-
picts the Shield architecture.

3.2.1 Data Structures
There are two main data structures: the application vul-

nerability state machine specifications (“Spec”) and the run-
time session states.

The Policy Loader transforms Shield policies into Specs.
Multiple vulnerability state machines for the same applica-
tion are compiled into one application vulnerability state
machine specification. Therefore, there is effectively one
state machine specification or Spec per application. Merg-
ing vulnerability state machines is easy if an entire protocol
had been specified in our Shield language (Section 5) ahead
of time: Newly discovered vulnerabilities can be expressed
by annotating the already-specified protocol state machine.

Session
Dispatcher

Per-App
Vulnerability

State Machine
Specification

(Spec)

New
Policies

SessionID Location
MessageType Location

Message boundary

Raw bytes
Port #

Raw bytes
Spec ID

Event for
Session i

Interpret (Handler)

ParsePayload

Drop

Shield Architecture

TearDownSession

Policy
Loader

Application
Dispatcher

Session
State

Session
State

Session
State i

CurState

HandlerAt(State, Event)

State
Machine

Instance i

State
Machine

Instance i

State
Machine

Instance i

Shield
Interpreter

SetNextState

Figure 2: Shield Architecture

The purpose of a Spec is to instruct Shield how to emulate
the application vulnerability state machines at runtime. As
mentioned in Section 3.1, the Spec contains the state ma-
chine specification, port number(s) for application identifi-
cation, and event and session identification information.

For event and session identification, a Spec indicates the
location (i.e., offset and size) vector for the event type and
session ID information in the packet, as well as the event
type values that are of concern to Shield. For application
protocols with only one state, the session ID is unnecessary
and left unspecified. Sometimes, an application-level proto-
col may involve negotiating for a dynamically selected port
number as a session ID for further communications (e.g.,
FTP [30] and RTP [36]). In this case, the port negotation
part of the protocol state machine must be specified, and
the new port number would be registered with Shield at
runtime for application identification from that point on.
The session ID would be specified as “PORT”, indicating
that all communication on this port is considered as a single
session. Upon termination of the session, the dynamic port
is de-registered with Shield.

To generalize the event dispatching abstraction to text-
based application level protocols such as HTTP [11] and
SMTP [17], we allow the units of “offset” and “size” to be
defined as words (made of characters), in addition to bytes.
For example, in HTTP and SMTP, the message type is in-
dicated at offset 0, with a size of 1 word. In HTTP, this
field contains the request-line method, such as ”GET” or
”POST”; when it is an HTTP version, it represents a status
message type [11]. In SMTP, this field contains the SMTP
command, such as “MAIL”, “RCPT”, or “DATA”. (Please
see Figure 4 for example.) Using words as a unit requires us
to include an additional policy element: maximum word size
— otherwise attackers could attack Shield using extremely
long words. Of course, we could generalize the unit even
further by making unit delimiters and maximum unit size
part of the Spec, beyond bytes and space-delimited words.
However, we have not yet found this to be necessary for the
handful of protocols we have examined.

Some application-level protocols (such as HTTP) allow
multiple application-level messages to be received in a single
buffer. Therefore, in addition to the session ID and message
type, the Spec also specifies the application level message
boundary marker, if any. For example, for HTTP, the mes-
sage boundary marker is CRLF CRLF.

One key challenge is that application level messages may

not be received in their entirety (due to congestion control
or application-specific socket usage) or in order (due to us-
ing UDP, for example). Even the essential event-identifying
parts of a message, such as event type and session ID, may
not arrive together. We address this problem using DoS-
resilient copying or buffering, which is detailed in Section 4.

Note that the session is an important abstraction for packet
dispatching and as a unit of shielding, apart from socket de-
scriptors or host pairs. This is because one socket descriptor
may be used for multiple sequential sessions; and multiple
sockets may be used to carry out communications over one
session (e.g., FTP [30]). Similarly, one pair of hosts may
be carrying out multiple sessions. In these cases, the use of
sessions eliminates any ambiguities on which packets belong
to which session.

The other data structure in Shield is session state. At run-
time, Shield maintains session state for each potentially vul-
nerable communication session. The session state includes
the current state of the session and other context informa-
tion needed for shielding.

3.2.2 Shield Modules
We now describe each Shield module in turn:
Policy Loader: Whenever a new Shield policy arrives

or an old policy is modified, the Policy Loader integrates
the new policy with an existing Spec if one exists, or cre-
ates a new one otherwise. The Shield policy is expressed in
the Shield policy language. Policy loading involves syntax
parsing, and the resulting syntax tree is also stored in the
Spec for the purpose of run-time interpretation of shield-
ing actions For details on the policy language design and
interpretation, please see Section 5.

Application Dispatcher: When raw bytes arrive at
Shield from a port, the Application Dispatcher is invoked
to determine which Spec to reference for the arrived data,
based on the port number. The Application Dispatcher for-
wards the raw bytes and the identified Spec to the Session
Dispatcher for event and session identification.

Session Dispatcher: On obtaining the locations of the
session ID, message type, and message boundary marker
from the corresponding Spec, the Session Dispatcher ex-
tracts multiple messages (if applicable), recognizes the event
type and session ID, and then dispatches the event to the
corresponding state machine instance.

State Machine Instance (SMI): There is one state
machine instance per session. Given a newly-arrived event
and the current state maintained by the corresponding ses-
sion state, the SMI consults the Spec regarding which event
handler to invoke. (Event handlers are included in Shield
policies; please see Section 5.) Then the SMI calls the Shield
Interpreter to interpet the event handler.

Shield Interpreter: The Shield Interpreter interprets
the event handler, which specifies how to parse the application-
level protocol payload and examine it for exploits. It also
carries out actions like packet-dropping, session tear-down,
registering a newly-negotiated dynamic port with Shield, or
setting the next state for the current SMI.

4. DETAILED DESIGN ISSUES

4.1 Scattered Arrivals
Although Shield intercepts traffic above the transport layer

and does not need to cope with network-layer fragments,
each data arrival perceived by Shield does not necessarily
represent a complete application level message that is inde-
pendently interpretable by the application. The scattered
arrivals of a single application level message could be due to
TCP congestion control or some specific message-handling
implementations of an application. For instance, a UDP
Server may make multiple calls to recvfrom() to receive a
single application level message. In this case, Shield would
recognize multiple data arrivals for such messages. This
complicates session dispatching when session ID or message
type are not received “in one shot”. It also complicates pay-
load parsing in the event handlers when not enough data has
arrived for an event-handler to finish parsing and checking.
Here, we must copy (i.e., buffer and pass on) part of the
incompletely-arrived data in the Shield system, and wait for
the rest of the data to arrive, before we can interpret it.

In addition, we need to index copy-buffers so that later ar-
rivals of the same message for a given session can be stitched
together properly. Although socket descriptors are not ap-
propriate to identify sessions (Section 3.2), they are safe for
indexing copy-buffers: While multiple sockets could be used
for one session (e.g., FTP [30]), a single application message
is typically2 not scattered over multiple sockets — otherwise
the application would not be able to interpret the parts of
the message due to the lack of information such as session
ID or message type; similarly, although one socket descriptor
could be used for multiple parallel sessions, an application
message has to be received on a socket continuously to its
completion without interruptions from any other applica-
tion messages. Therefore, we can apply per-socket copying
for incomplete message arrivals.

We differentiate between pre-session copying and in-session
copying. Pre-session copying happens when the session ID
information has not completely arrived, while in-session copy-
ing refers to the copying of the data whose session is known.
A copy-buffer is associated with a socket initially before a
session ID fully arrives. Once the session ID is received, the
copy-buffer is associated with both a socket and its respec-
tive session. Once a complete application message has been
received, the copy-buffer is de-allocated.

We do not need to save the entire partially arrived mes-
sage, but only the partially arrived field. For example, when
a Session ID field has not arrived completely — say only 2
out of 4 bytes — Shield only needs to remember that it is
parsing the Session ID field, and saves the received two bytes
only. This reduces the overhead of copying in Shield.

We now introduce another runtime data structure that
needs to be maintained by Shield: parsing state. This state
is per application-level message, and it records which field of
an application message is being parsed, and how many bytes
have already been received for that field. The field has to
be a “terminal” field rather than a structure of fields; for a
field nested in other structures or an array, the field is rep-
resented as something like “someStructure.fields[i]”. This
restriction minimizes the amount of copying needed, since
terminal fields are typically small.

2pTCP [14] proposes the use of TCP-v as an abstraction of
a connection which can use multiple sockets instead of one
as in TCP. If pTCP were deployed, Shield would use TCP-v
to index the copy-buffer instead.

For a vulnerable application, we must maintain the state
of the current field being parsed for each of the application
messages, even when Shield had already determined that
the session to which the message belongs would not lead to
any exploit. (However, we do not maintain session state and
the copy-buffer for such sessions.) This prevents ambiguity:
If we do not keep the parsing state for the message, other
parts of the message would be treated as new application
messages. Attackers could then easily craft parts of a single
application-level message [32], send them separately, and
cause inconsistencies between the emulated state machine
in Shield and the actual state machine in the application.

For Shield to be able to parse application messages, pars-
ing instructions (or payload formats) for all of an applica-
tion’s message types must be specified to Shield in policy
descriptions. Therefore, payload formats must also be part
of the Spec. Fortunately, Shield does not need to parse all
messages in detail, but only the parts necessary for detecting
the presence of an exploit. Therefore, we can aggressively
bundle many fields of an application message into one field
with a total byte count or word count, which will be the
number of bytes or words to skip during parsing. When
Shield determines the innocence of a session, the goal of
parsing its subsequent application-level messages is only to
find the end of those messages. Hence, parsing for those
messages can be even further streamlined.

While specifying all application messages seems daunting,
if an application level protocol were specified in a standard
and formalized format (such as our policy language-like for-
mat — see Section 5), we could automatically extract pay-
load format specifications and vulnerability state machines
from that format to our policy language. On the other hand,
if a Shield designer knows for a fact that scattered arrivals
of a message do never happen (e.g., single rather than mul-
tiple recvfrom() calls when receiving a single application
message in a UDP server implementation), then only events
involved in the vulnerability state machine need to be spec-
ified.

4.2 Out-of-Order Arrivals
When an application-level protocol runs on top of UDP,

its datagrams can arrive out of order. Applications that care
about the ordering of these datagrams will have a sequence
number field in their application-level protocol headers. For
Shield to properly carry out its exploit detection functions,
Shield copies the out-of-order datagrams, and passes them
on to the applications. This way, Shield can examine the
packets in their intended sequence. Shield sets the upper
limit of the number of copied datagrams to be the maximum
number of out-of-order datagrams that the application-level
protocol can handle. Hence, this maximum also needs to be
expressed in the policy descriptions, as does the sequence
number location.

4.3 Application Level Fragmentation
Shield runs on top of the transport layer. Hence, Shield

does not need to deal with network-layer fragmentation and
re-assembly. Nonetheless, some application-level protocols
use application data units and perform application level
fragmentation and re-assembly. For protocols over TCP,
bytes are received in order. For protocols over UDP, Shield
copies their out-of-order datagrams to retain the correct
packet sequence (see the above section). Therefore receiv-
ing and processing application level fragments is no different
from processing partially arrived data, as explained in Sec-

tion 4.1. However, the Spec needs to contain the location of
the application-level fragment ID in the message, so that a
fragment is not treated as an entire message event.

5. SHIELD POLICY LANGUAGE
In this section, we present the Shield policy language

which is used to describe the vulnerabilities and their coun-
termeasures for an application.

Figures 3, 4, and 5 show some examples of our policy lan-
guage usage. They are policy scripts for the vulnerabilities
behind Slammer [40], CodeRed [6], and MSBlast [24], re-
spectively. Please note that these scripts are written based
on the knowledge of the vulnerabilities rather than their re-
spective attack instances.

Vulnerability behind Slammer

SHIELD (Vulnerability_Behind_Slammer, UDP, (1434))

0 offset, size of 1 byte

MSG_TYPE_LOCATION = (0, 1);

INITIAL_STATE S_WaitForSSRPRequest;

FINAL_STATE S_Final;

MsgType = 0x4

EVENT E_SSRP_Request = (0x4, INCOMING);

STATE_MACHINE = {

(S_WaitForSSRPRequest, E_SSRP_Request, H_SSRP_Request),

};

HANDLER H_SSRP_Request (DONT_CARE) {

COUNTER legalLimit = 128;

MSG_LEN returns legalLimit + 1 when legalLimit is exceeded

COUNTER c = MSG_LEN (legalLimit);

IF (c > legalLimit)

DROP;

RETURN (S_FINAL);

FI

RETURN (S_Final);

};

Figure 3: Policy description of the vulnerability be-
hind Slammer

Shield for vulnerability behind CodeRed

SHIELD(Vulnerability_Behind_CodeRed, TCP, (80))

INITIAL_STATE S_WaitForGetRequest;

FINAL_STATE S_Final;

#

MSG_TYPE_LOCATION= (0, 1) WORD;

MSG_BOUNDARY = "\r\n\r\n";

EVENT E_GET_REQUEST = ("GET", INCOMING);

STATE_MACHINE = {

(S_WaitForGetRequest, E_GET_Request, H_Get_Request),

};

PAYLOAD_STRUCT {

WORDS(1) method,

WORDS(1) URI,

BYTES(REST) dummy2,

} P_Get_Request;

HANDLER H_Get_Request (P_Get_Request) {

COUNTER legalLimit = 239;

COUNTER c = 0;

\?(.*)$ is the regular expression to retrieve the

query string in the URI

MATCH_STR_LEN returns legalLimit + 1 when legalLimit is exceeded

c = MATCH_STR_LEN (>>P_Get_Request.URI, "\?(.*)$", legalLimit);

IF (c > legalLimit)

Exploit!

TEARDOWN_SESSION;

RETURN (S_FINAL);

FI

RETURN (S_FINAL);

};

Figure 4: Policy description of the vulnerability be-
hind CodeRed

There are two parts to the policy specification in the
Shield language. The first part is static and includes states,

SHIELD (Name, Transport_Protocol, (port-list))

SHIELD (Vulnerability_Behind_MSBlast, TCP, (135, 139, 445))

SESSION_ID_LOCATION = (12, 4); # offset 12, 4 bytes

MSG_TYPE_LOCATION = (2, 1); # offset 2, 1 byte

INITIAL_STATE S_WaitForRPCBind;

FINAL_STATE S_Final;

STATE S_WaitForRPCBindAck;

STATE S_WaitForRPCAlterContextResponse;

STATE S_WaitForRPCRequest;

STATE S_WaitForSessionTearDown;

EVENT eventName = (<eventTypeValue>, <direction>)

EVENT E_RPCBind = (0x0B, INCOMING);

EVENT E_RPCBindAck = (0x0C, OUTGOING);

EVENT E_RPCBindNak = (0x0D, OUTGOING);

EVENT E_RPCAlterContext = (0x0E, INCOMING);

EVENT E_RPCAlterContextResponse = (0x0F, OUTGOING);

EVENT E_RPCRequest = (0x0, INCOMING);

EVENT E_RPCShutdown = (0x11, OUTGOING);

EVENT E_RPCCancel = (0x12, INCOMING);

EVENT E_RPCOrphaned = (0x13, INCOMING);

STATE_MACHINE = {

(State, Event, Handler),

(S_WaitForRPCBind, E_RPCBind, H_RPCBind),

(S_WaitForRPCBindAck, E_RPCBindAck, H_RPCBindAck),

(S_WaitForRPCRequest, E_RPCRequest, H_RPCRequest),

...

};

payload parsing instruction for P_Context

PAYLOAD_STRUCT {

SKIP BYTES(6) dummy1,

BYTES(1) numTransferContexts,

SKIP BYTES(1) dummy2,

BYTES(16) UUID_RemoteActivation,

SKIP BYTES(4) version,

SKIP BYTES(numTransferContexts * 20) transferContexts,

} P_Context;

PAYLOAD_STRUCT {

SKIP BYTES(24) dummy1,

BYTES(1) numContexts,

SKIP BYTES(3) dummy2,

P_Context[numContexts] contexts,

...

} P_RPCBind;

HANDLER H_S_RPCBind (P_RPCBind)

{

if invoking the RemoteActivation RPC call

IF (>>P_RPCBind.contexts[0]

== 0xB84A9F4D1C7DCF11861E0020AF6E7C57)

RETURN (S_WaitForRPCBindAck);

FI

RETURN (S_Final);

};

HANDLER H_RPCBindAck (P_RPCBindAck)

{

RETURN (S_WaitForRPCRequest);

};

HANDLER H_RPCRequest (P_RPCRequest)

{

IF (>>P_RPCRequest.bufferSize > 1023)

TEARDOWN_SESSION;

PRINT ("MSBlast!");

RETURN (S_Final);

FI

RETURN (S_WaitForSessionTearDown);

};

other PAYLOAD_STRUCTs/Handlers

are not included here ...

Figure 5: Excerpt from the policy description of the vulnerability behind MSBlast

events, state machine transitions, and generic application
level protocol information such as ports used, the locations
of the event type, session ID, sequence number or fragment
ID in a packet, and the message boundary marker. This
part of the policy specification is loaded into the Spec data
structure directly by the Policy Loader (Figure 2), and is
independent of runtime conditions.

The second part of the policy specification is for runtime
interpretation during exploit checking. This includes the
handler specification and payload parsing instructions (i.e.,
PAYLOAD STRUCT definitions in the figures). The role of
the handler is to examine the packet payload and pinpoint
any exploit in the current packet payload, or to record the
session context that is needed for a later determinination of
exploit occurrence. To examine a packet, a handler needs
to follow the policy’s payload parsing instructions.

When a policy is loaded, the Policy Loader parses the
syntax of the handlers and the payload format, and stores
the syntax tree in the Spec for run-time interpretation.

5.1 Payload Specification
The PAYLOAD STRUCT definitions specify how to parse

an application-level message. Shield needs not parse out all
the fields of a payload, as in the actual applications, but
only the fields relevant to the vulnerability. We allow the
policy writers to simplify payload parsing by clustering in-
significant fields together as a single dummy field of the re-
quired number of bytes (e.g., field dummy1 of P RPC Bind
in Figure 5). Such fields are marked as skippable during
parsing using the keyword SKIP, so that no copy-buffer
is maintained for such fields (Section 4.1). From examin-
ing a number of application level protocols, we have found
that payload parsing specification only needs to support a
limited set of types for fields, including bytes of any size
(i.e., BYTES(num) where “num” could be a variable size
or an expression), words of any size (i.e., WORDS(num))
for text-based protocols, (multi-dimensional) arrays of PAY-
LOAD STRUCT’s, and booleans.

5.2 Handler Specification
The Shield language for handler specification is very sim-

ple, and highly specialized for our purpose. Variables have
only two scopes: they are either local to a handler or “global”
within a session across its handlers. There are only four data
types: BOOL for booleans, COUNTER for whole numbers,
byte arrays such as “BYTES(numBytes)”, and word arrays
such as “WORD(numWords)”. We also have built-in vari-
ables for handlers to use, such as SESSION ID.

Built-in functions include DROP , TEARDOWN SESSION,
REGISTER PORT, length-based functions such as MSG LEN
(Figure 3) and MATCH STR LEN (Figure 4), and regular
expression functions that may be needed for text-based pro-
tocols. DROP drops a packet while TEARDOWN SESSION
closes all sockets associated with a session. The regular ex-
pression functions are data stream-based rather than string
buffer-based. That is, they must be able to cope with scat-
tered message arrivals. Similarly, length functions are also
stream-based with a required parameter of “stop count”
(e.g., “legalLimit” in our example scripts) to facilitate the
handling of buffer overrun-type vulnerabilities. When the
length reaches “stop count”, counting stops and returns
“stop count”+1. This way, Shield will not count and main-
tain state beyond what is necessary in the case of buffer-
overrun exploits.

The syntax “Àpayload” instructs Shield to parse and to
refer to the bytes that represent the “payload” of the packet,
according to the parsing instruction defined for “payload”
(i.e., there should be a definition: “PAYLOAD STRUCT
{...} payload;” earlier in the policy decription). The parsed
fields of a PAYLOAD STRUCT are treated as local variables
for that handler. Within the handler, we allow assignments,
if-statements, iterators, and return-statements that exit the
handler and indicate the next state the session should be in.
The iterators, rather than being traditional general-purpose
for-loops, are used for parsing iterative payload structures,
such as arrays of items. For example, given “FOREACH

(item IN À Payload.itemArray) { ... }”, the interpreter
parses items of the “itemArray” field of the “Payload” it-
eratively, according to the “Payload” definition, and along
the way, performs some operations on the bytes representing
each “item”. Note that the interpreter does not keep state
across items.

During handler interpretation, the current payload being
parsed may not be completely received. In this case, we save
the execution state of the handler as part of the session state
so that when new data arrives, the handler’s execution can
be resumed. This is very much like call continuation. In
our case, the continuation state includes a queue of current
handler statements being executed because of potentially
nested statements and the parsing state (Section 4.1) for
the payload — that is, the current field of the payload being
parsed, and the bytes read for that field.

The restrictive nature of our language makes it a safer lan-
guage than general-purpose languages. While our language
is restrictive, we find it sufficient for all of the vulnerabilities
that we have worked with and the application level protocols
that we have examined. However, it is still evolving as we
gain experience from shielding more vulnerabilities and pro-
tocols; and in the process, we are also investigating how we
may incorporate techniques from previous research in pro-
tocol, packet, or data structure specification languages [21,
25, 10], that are appropriate for the purphose of shielding.

Our language is simpler than the Bro language [27] that is
used for scripting the security policies of the Bro Nework In-
trusion Detection System (NIDS). This is because Bro per-
forms network monitoring and intrusion detection for the
network layer and above of the network stack, and also
monitors cross-application, cross-session interactions based
on various attack patterns. In contrast, Shield is only con-
cerned with application-specific traffic passing over trans-
port layer, or of even higher-level protocols such as HTTP
and RPC. Furthermore, a key advantage of the vulnerability-
driven approach of Shield over attack- or exploit-driven ap-
proachs such as NIDS is that Shield does not need to con-
sider attack activities before the vulnerable application is
involved, as in, for example, multi-stage attacks, where an
attack setup stage precedes the actual vulnerability exploita-
tion. Shield only needs to screen the traffic of particular
vulnerable applications.

6. ANALYSIS

6.1 Scalability with Number of Vulnerabilties
In this section, we discuss how Shield scales with the num-

ber of vulnerabilities on a machine.
The number of shields on an end host should not grow

arbitrarily large, because each shield will presumably be
removed when its corresponding vulnerability is patched.
Also, Shields are application-specific, adding negligible over-
head to applications to which they do not apply. Hence, N
Shields for N different applications are equivalent to a sin-
gle shield in terms of their effect on the performance of any
single application.

An application may have multiple vulnerabilities over time.
The state machines that model these vulnerabilities should
preferably be merged into a single one. Otherwise, each state
machine must be traversed for each packet, resulting in lin-
ear overhead. When these vulnerabilities appear on disjoint
paths of the merged state machine, per-packet shield pro-
cessing overhead for them is almost equivalent to the over-
head for just one vulnerability. For vulnerabilities that share

paths in the state machine, however, shield overhead may be
cumulative. On the other hand, our data on vulnerabilities
presented in Section 8.1 suggests that this cumulative effect
is not significant: For worm-exploitable vulnerabilities, no
more than three vulnerabilities ever appeared over a single
application level protocol throughout the whole year.

In any case, for vulnerable applications, the application
throughput with shield is, at worst, about halved, since the
network traffic is processed at most twice — once in Shield
and once in the application. Moreover, our experiments with
our Shield prototype indicate that Shield’s impact on appli-
cation throughput is small (Section 8.2).

6.2 False Positives
By design, shields are able to recognize and filter only traf-

fic that exploits a specific vulnerability, and hence should
have very low false positives. However, false positives may
arise from incorrect policy specification due to misunder-
standing of the protocol state machines or payload formats.
Such incorrect policy specification can be debugged with
stress test suites or simply by replaying a substantial volume
of application traffic traces. Trace replay at the application
level is easy since it is not necessary to replay the precise
transport protocol behavior.

Another source of false positives may be state-sensitive
application behavior upon receiving an exploit event. The
application state machine embedded at that state may only
trigger the vulnerable code based on the local machine set-
ting or some runtime conditions. While such information
can also be incorporated into Shield, it is difficult to gen-
eralize such application-specific implementation details to
simple and safe policy language constructs. For the vul-
nerabilities with which we have experimented, we have not
observed such false positives.

7. IMPLEMENTATION
We have prototyped an end host-based Shield system on

Microsoft Windows XP. In particular, we have implemented
Shield as a Microsoft WinSock2 Layered Service Provider
(LSP) [15]. WinSock2 API is the latest socket programming
interface for network applications on Windows. At runtime,
these network applications link in the appropriate socket
functions from the WinSock2 dymamically linked library
(DLL) when making socket function calls. The LSP mecha-
nism in WinSock2 allows new service providers to be created
for intercepting WinSock2 calls to the kernel socket system
calls. An LSP is compiled into a dynamically linked library.
Upon installation, any applications making WinSock2 calls
link in both the WinSock2 DLL and the LSP DLL. We use
this mechanism to implement Shield for intercepting vulner-
able application traffic above the transport layer as shown
in Figure 6.

TCP/IP ATM Others.

Windows Socket Kernel Mode Driver
(AFD.SYS)

Shield Layered Service Provider
(SHIELDLSP.DLL)

Winsock 2.0 (WS2_32.DLL)

Applications

K
ern

el
U

ser

Figure 6: Shield Prototype Using WinSock2 LSP

Our Shield LSP implements the architecture depicted in

Figure 2 with 10,702 lines of C++ code3. We employ Flex [26]
and Byacc [4] to parse the syntax of the Shield policy lan-
guage, and the Policy Loader calls the Byacc API to obtain
the syntax trees of the policy scripts.

We have used the vulnerabilities behind Slammer [40],
MSBlast [24], CodeRed [6], and twelve other vulnerabili-
ties from Microsoft security bulletins to drive our design
and implementation. They are all input validation failure
vulnerabilities, such as buffer overruns, integer overflows,
or malformed URLs. Slammer exploits a proprietary ap-
plication level protocol, SSRP [40], on top of UDP. MS-
Blast exploits RPC [34] over either TCP or UDP. CodeRed
uses HTTP [11]. Other vulnerabilities exploit Telnet [29],
SMB [38], HTTP or RPC. We have also examined some
other protocols such as RTP [36] and SMTP [17] during the
design of our policy language.

8. EVALUATIONS

8.1 Applicability of Shield
How applicable is Shield to real-world vulnerabilities? Shield

was designed to catch exploits in a wide variety of application-
level protocols, but there are several potential gaps in its
coverage:

• Vulnerabilities that result from bugs that are deeply
embedded in the application’s logic are difficult for
Shield to defend against without replicating that ap-
plication logic in the network. For example, browser-
based vulnerabilities that can be exploited using HTML
scripting languages are difficult for Shield to prevent,
since those languages are so flexible that incoming
scripts would likely have to be parsed and run in sim-
ulation to discover if they are in fact exploits.

• Even simple vulnerabilities that are exploitable by mal-
formed, network protocol-independent application ob-
jects (such as files) are difficult for Shield to catch.
For example, a shield against otherwise simple buffer
overruns in application file format parsers would have
to spot an incoming file arriving over many different
protocols. For file-based vulnerabilities, vulnerability-
specific anti-virus software (rather than the exploit-
signature-based kind typically used today) would be
more appropriate. Such software already has to deal
with the polymorphism sometimes exhibited by viruses.

• Application-specific encryption poses a problem for Shield,
as mentioned in Section 1.

To assess the significance of these obstacles, we analyzed
the entire list of security bulletins published by the Microsoft
Security Response Center (MSRC) for the year 2003. Ta-
ble 1 summarizes our findings. Of the 49 bulletins, six de-
scribed vulnerabilities that were purely local, not involv-
ing a network in any way. Of the rest, 24 described “user-
involved” vulnerabilities, in the sense of requiring local user
action on the vulnerable machine — such as navigating to a
malicious Website, or opening an emailed application — to
trigger. The remaining 19 described server vulnerabilities,
in the sense of being possible to trigger via the network,
from outside the machine.

The user-involved vulnerabilities generally appear difficult
to design shields for. However, none of them are likely to

3This line count does not include the generated Flex and
Byacc files.

of Vuln. Nature Wormable Shieldable

6 Local No No
24 User-involved No Usually Hard
12 Server buffer overruns Yes Easy
3 Cross-site scripting No Hard
3 Server Denial-of-service No Varies

Table 1: Applicability of Shield for vulnerabilities of
MSRC over the year 2003.

result in self-propagating worms, because they cannot be
exploited without some kind of user action upon the browser.
For example, seven involved application file formats. Two
were email client vulnerabilities, one was a media player
vulnerability, and the rest were found in the browser, and
hence invoked via HTML or client-side scripting.

Of the server vulnerabilities, twelve might conceivably be
exploitable by worms, under “ideal” conditions — i.e., the
server application being very widely deployed in an unpro-
tected, unpatched and unfirewalled configuration. The re-
mainder included three denial-of-service attacks, three “cross-
site scripting” attacks, and a potential information disclo-
sure. These are not vulnerable to exploitation by worms.

Of the potentially worm-exploitable vulnerabilities, five
involved application level protocols running over HTTP. The
rest involved specific application level protocols — typically
directly over TCP or UDP — none of which appear inher-
ently incompatible to the Shield approach. Moreover, all
twelve were based on buffer overruns, and hence amenable
to shielding.

Thus, while many vulnerabilities may not appear to be
suitable for the Shield treatment, in fact the most threaten-
ing — those prone to exploitation by worms — appear to
be disproportionately Shield-compatible.

We also assessed the reliability of the patches associated
with our sample set of security bulletins. Of the patches as-
sociated with the 49 bulletins, ten (including three repairing
potentially worm-exploitable vulnerabilities) were updated
at least once following their initial release. Eight of those
(including two involving wormable vulnerabilities) were up-
dated to mitigate reported negative side effects of the patch.
The others were augmented with extra patches for legacy
versions of the product. These side effects would likely have
been avoided had Shield been used in place of the patch,
since a key advantage of shields over patches is their easy
testability (see Section 1).

Finally, with the exception of HTTP-related vulnerabili-
ties, no single application-level protocol exhibited more than
RPC’s three vulnerabilities during the entire year. Hence,
apart from the HTTP port, no port is likely to be burdened
with so many combined shields at a given time that the cu-
mulative performance cost of multiple shields becomes an
issue separate from the overhead of shielding the port in the
first place.

8.2 Application Throughput
To evaluate the impact of Shield on application through-

put and CPU usage, we have devised the following exper-
iment: We have multiple clients establishing simultaneous
sessions over TCP with a server. The server is a Dell PWS650
with a 3.06 Ghz CPU and 1 GB of RAM. The clients and
the server are connected via a 100 Mbps or 1 Gbps Ethernet
switch. All computers run Windows XP SP1.

We use the following client-server protocol:

SHIELD (ThroughputTest, TCP, (9898))

STATE_MACHINE = {

(S_WaitForBind, E_Bind, H_Bind),

(S_WaitForBindAck, E_BindAck, H_BindAck),

(S_WaitForRequest, E_Request, H_Request),

(S_WaitForResponse, E_Response, H_Response),

(S_WaitForRequest, E_Shutdown, H_Shutdown),

};

PAYLOAD_STRUCT {

BYTES(1024) item,

} P_Unit;

PAYLOAD_STRUCT {

BYTES(4) field1,

upto 1024 bytes of data is buffered for each session

P_Unit[1024] MBytes,

} P_RESPONSE;

HANDLER H_Response (P_RESPONSE)

{

FOREACH (P_unit IN >>P_RESPONSE.MBytes) {

touching each byte of the 1 MB data

PRINT (>>P_Unit.item);

}

RETURN (S_FINAL);

};

Figure 7: Excerpt from our throughput experiment
policy

25

35

45

55

65

75

85

95

10 15 20 50 100 150 200 500 1000

of Clients

C
P

U
 U

sa
g

e
(%

)

No Shield, No LSP LSP, No Shield LSP and Shield

Figure 8: CPU Comparison for 100 Mbps Switch

1. Client -> Server: BIND

2. Server -> Client: BIND_ACK

3. Client -> Server: MSG_REQUEST

4. Server -> Client: MSG_RESPONSE of 1 MB data

5. Goto 1

We used the policy script shown in Figure 7. 1 MB of data
in MSG RESPONSE is represented as an array of P Units
that consists of 1024 bytes. This increases the experiment’s
stress on resources, since each session will buffer up to 1KB.

We measure the server’s throughput and CPU usage in
three scenarios, using either a 100 Mbps Ethernet switch or
a Gbps one: 1) without LSP and Shield; 2) with LSP, but
without Shield (i.e., the packets just pass through the LSP);
3) with LSP and Shield.

With the 100 Mbps switch, all three scenarios achieve a
maximum possible throughput of 92.8 Mbps. However, we
observe that LSP incurs 11-28% CPU overhead when the
number of clients is low (≤ 50), and Shield logic adds just a
few percent on top of the LSP overhead. Figure 8 shows the
CPU usage comparison. With a 1 Gbps Ethernet switch,
the high-speed switching saturated CPU usage for all cases.
Nevertheless, we can observe the differences in throughput
for all three scenarios, as shown in Figure 9. As the number
of clients increases, the throughput decreases for all scenar-
ios: LSP degrades throughput by 12%, and Shield further
degrades the throughput by another 11%. While such over-
head is manageable, we observe that much of the overhead
is due to the WinSock LSP design [15]. WinSock LSP is

300

350

400

450

500

550

600

650

0 100 200 300 400 500
of Clients

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

No Shield, No LSP LSP, No Shield LSP and Shield

Figure 9: Throughput Comparison for 1 Gbps
Switch

designed to allow multiple LSPs (like Shield) to be chained
as layers of providers and consumers. A socket instance of
an LSP inherits the context information from its provider
through socket replication. The base provider is the respec-
tive kernel socket. Further, cross-layer socket associations
and translations must also be carried out by LSPs. This be-
comes especially inefficient when “select” calls are used over
a large number of sockets for I/O multiplexing, which is the
case for our experiment. We suspect that a well-designed
kernel implementation of Shield could eliminate much of the
overhead incurred by LSP.

8.3 False Positives
As mentioned in Section 6.2, false positives come from ei-

ther a misunderstanding of the protocol state machine or the
differential treatment of an exploit in the application. In this
section, we evaluate the false positve nature of our Shield-
LSP implementation. We focus our attention on the Shield
we designed for Slammer [40], which exploits the SSRP pro-
tocol of SQL Server 2000.

We obtained a stress test suite for SSRP from the vendor.
SSRP is a very simple protocol with only 12 message types.
The test suite contains a total of 36 test cases for exhaustive
testing of SSRP requests of various forms. Running this
test suite against our Shield, we did not observe any false
positives. Of course, this example does not prove that Shield
is false positive-free.

9. RELATED WORK
The onsets of CodeRed [6], Slammer [40], and MSBlast [24]

in the past few years have provoked great interest in worm
defense research. Many [23, 42, 22, 45] have characterized
and analyzed the fast- and wide-spreading nature and po-
tential [47, 5] of modern-day worms.

Most worm attacks today exploit software defects, such as
buffer overruns on stacks or heaps, for remote code execu-
tion. Static checkers that perform data flow analysis [3, 44]
over source code have been effective in finding software de-
fects systematically before software releases. However, such
tools are not false negative-free. Mitigation techniques, such
as Stackguard [8] and non-executable stacks or heaps, raise
the bar for software defect exploitation, but attackers can
cross the bar with new exploitation techniques [28, 49, 19].

Attack prevention techniques address attacks against known
vulnerabilities. These techniques make use of well-defined
invariants, namely the known vulnerabilities. Both software
patching and Shield fall into this category. Section 1 gives
detailed comparisons between the two.

Worm containment techniques are typically used for con-
taining known worms. Firewalls can be used for this pur-
pose, by, for example, blocking a port that is under attack.
Firewalls have a function similar to Shield, but work in
a much cruder way — rarely customized in response to a
particular vulnerability, for instance. They are usually not
deployed on the end host, and thus vulnerable to evasion
opportunities [32] for attackers. Moreover, firewalls are un-
aware of most application-level protocols (and may not even
have access to them — if, for example, traffic is encrypted).

Exploit signature-based Network Intrusion Prevention sys-
tems (NIPS), such as Snort-based Hogwash [41], filter out
malicious traffic according to attack signatures. The signa-
tures are typically in the form of regular expressions. Traf-
fic blocking is based on packet-level inspection and pattern
matching, which can be easily manipulated by attackers
to cause false negatives and false positives, since applica-
tion messages can be scattered over multiple packets [32].
These systems require fast signature extraction algorithms
(e.g., EarlyBird [39], Autograph [16]) for them to be worm-
containing. The biggest challenge these algorithms face is
polymorphic or metamorphic worms.

Rate-limiting [48] is another containment method that
throttles the sending rate at an infected end host. The con-
tainment method — blocking the detected scanning activity
of compromised nodes [46] — has also been explored as a
weapon against scanning worms. Rate-limiting and scan-
ning worm containment are mostly useful for fast-spreading
worms, rather than the “stealthy” kind.

Network Intrusion Detection Systems (NIDS), exemplified
by Bro [27] and Snort [41], monitor network traffic and de-
tect attacks of known exploits. NIDS are usually more cus-
tomized by application than firewalls, but deal with known
exploits rather than known vulnerabilities. Unlike Shield,
NIDS are not on the traffic forwarding path. Moreover, they
focus on detection rather than attack prevention. For more
reliable attack detection, “traffic normalizers” [37, 13] or
“protocol scrubbers” [20] have been proposed to protect the
forwarding path by eliminating potential ambiguities before
the traffic is seen by the monitor, thus removing evasion
opportunities. In addition to evasion, NIDS systems face
the issue of a high false postive rate, which complicates the
reaction process.

Another interesting attack detection and signature extrac-
tion mechanism is the deployment of “honeypots” that cover
“dark” or unused IP address space. Some examples are
Backscatter [23], honeyd [31], HoneyComb [18], and Honey-
Stat [9]. Any unsolicited outgoing traffic from the honeypots
reveals the ocurrence of some attack.

10. CONCLUSIONS AND FURTHER WORK
We have shown that network-based vulnerability-specific

filters are feasible to implement, with low false positive rates,
manageable scalability, and broad applicability across proto-
cols. There are, however, still a number of natural directions
for future research on Shield:

• Further experience writing shields for specific vulner-
abilities will better indicate the range of Shield’s ap-
plicability and the adequacy of the Shield policy lan-
guage. It may also be possible to develop automated
tools to ease Shield policy generation.

For example, writing a shield policy currently requires
a fairly deep understanding of the protocol over which
the vulnerability is exploited. For protocols described

in a standard, formalized format, however, it should
be possible to build an automated tool that generates
most of the protocol-parsing portion of a shield policy.
The rest of the task of writing the policy would still
be manual, but it is often relatively easy, since the
vulnerability-exploiting portion of the incoming traffic
— say, an overly long field that causes a buffer overrun
— is often easy to identify once the traffic has been
parsed.

• Shield needs not necessarily be implemented at the
end host. It may be preferable in some cases, from an
administration or performance point of view, to de-
ploy Shield in a firewall or router, or even in a special-
purpose box. However, these alternate deployment op-
tions have yet to be explored.

• One of the advantages of Shield is that shields can in
principle be tested in a relatively simple way, verifying
that some collection of traffic (test suites or real-world
traces) is not interfered with. Automating this process
would make the shield release process even easier.

• Ensuring the secure, reliable and expeditious distri-
bution of Shields is crucial. While releasing a patch
enables attackers to reverse-engineer the patch to un-
derstand its corresponding vulnerability, and thus to
exploit it, Shield makes reverse-engineering even eas-
ier since vulnerability signatures are spelled out in
Shield policies. Therefore, Shield distribution and in-
stallation is in an even tighter race with the exploit-
designing hacker.

• It is possible that Shield’s design might prove useful
when applied to the virus problem, since some viruses
exploit a vulnerability in the application that is in-
voked when an infected file is opened. Today, most
anti-virus software is signature-based, identifying spe-
cific exploits rather than vulnerabilities. Incorporating
shield-like technology into anti-virus systems might al-
low them to protect against generic classes of viruses
that use a particular infection method.

11. ACKNOWLEDGEMENT
Jon Pincus has given us insightful and constant advice

since the idea formation stage of the Shield project. Jay
Lorch gave us many thoughtful critiques on the first draft
of this paper. Many Microsoft employees from the product
side have graciously helped us with understanding various
aspects of many vulnerabilities from Microsoft Security Bul-
letins and using stress test suites for a number of applica-
tion level protocols. Andrew Begel and Zhe Yang offered us
helpful discussions on our policy language design and inter-
preter implementation. This work also benefited from our
discussions with Nikita Borisov, David Brumley, Hao Chen,
John Dunagan, Jason Garms, Jon Howell, Yih-Chun Hu,
Jitu Padhye, Vern Paxson, Stefan Savage, Dawn Song, Nick
Weaver, and Brian Zill. The final version of this paper is
much influenced by the anonymous SIGCOMM reviewers,
Nikita Borisov, and our shepherd, Paul Barford. We are
grateful for everyone’s help.

12. REFERENCES
[1] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of

Vulnerability: a Case Study Analysis. IEEE Computer,
2000.

[2] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle,
and Chris Wright. Timing the application of security
patches for optimal uptime. In LISA XVI, November 2002.

[3] William Bush, Jonathan D. Pincus, and David J. Sielaff. A
Static Analyzer for Finding Dynamic Programming Errors.
Software-Practice and Experience (SP&E), 2000.

[4] Byacc. http://dickey.his.com/byacc/byacc.html.
[5] Z. Chen, L. Gao, and K. Kwiat. Modeling the Spread of

Active Worms. In Proceedings of IEEE Infocom, 2003.
[6] Microsoft Security Bulletin MS01-033, November 2003.

http://www.microsoft.com/technet/treeview/
default.asp?url=/technet/security/bulletin/MS01-033.asp.

[7] Microsoft Corp. URLScan Security Tool.
http://www.microsoft.com/technet/security/URLScan.asp.

[8] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony,
Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, and Qian Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow
Attacks. In Proceedings of 7th USENIX Security
Conference, 1998.

[9] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Julian
Grizzard, John Levine, and Henry Owen. HoneyStat:
LocalWorm Detection Using Honeypots. In RAID, 2004.

[10] O. Dubuisson. ASN.1 - Communication Between
Heterogeneous Systems. Morgan Kaufmann Publishers,
2000.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
– HTTP/1.1 (RFC 2616), June 1999.

[12] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The
SSL Protocol Version 3.0.
http://wp.netscape.com/eng/ssl3/ssl-toc.html.

[13] Mark Handley, Vern Paxson, and Christian Kreibich.
Network Intrusion Detection: Evasion, Traffic
Normalization, and End-to-End Protocol Semantics. In
Proceedings of USENIX Security Symposium, August 2001.

[14] Hung-Yun Hsieh and Raghupathy Sivakumar. A transport
layer approach for achieving aggregate bandwidths on
multi-homed mobile hosts. In ACM Mobicom, September
2002.

[15] Anthony Jones and Jim Ohlund. Network Programming for
Microsoft Windows. Microsoft Publishing, 2002.

[16] H. A. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. In Proceedings of the
13th Usenix Security Symposium, 2004.

[17] J. Klensin. Simple Mail Transfer Protocol (RFC 2821),
April 2001.

[18] C. Kreibich and J. Crowcroft. Honeycomb: Creating
Intrusion Detection Signatures Using Honeypots. In
HotNets-II, 2003.

[19] David Litchfield. Defeating the stack based buffer overflow
prevention mechanism of microsoft windows 2003 server.
http://www.nextgenss.com/papers.htm, September 2003.

[20] G. Robert Malan, David Watson, and Farnam Jahanian.
Transport and application protocol scrubbing. In
Proceedings of IEEE Infocom, 2000.

[21] P. J. McCann and S. Chandra. PacketTypes: Abstract
Specification of Network Protocol Messages. In Proceedings
of ACM SIGCOMM, 2000.

[22] David Moore, Vern Paxson, Stefan Savage, Colleen
Shannon, Stuart Staniford, and Nicholas Weaver. Inside the
Slammer Worm.
http://www.computer.org/security/v1n4/j4wea.htm, 2003.

[23] David Moore, Colleen Shannon, and Jeffery Brown.
Code-Red: a case study on the spread and victims of an
Internet worm. In ACM Internet Measurement Workshop
(IMW), 2002.

[24] Microsoft Security Bulletin MS03-026, September 2003.
http://www.microsoft.com/technet/treeview/
default.asp?url=/technet/security/bulletin/MS03-026.asp.

[25] S. W. O’Malley, T. A. Proebsting, and A. B. Montz. USC:
A Universal Stub Compiler. In Proceedings of ACM
SIGCOMM, 1994.

[26] Vern Paxson. Flex - a scanner generator - Table of
Contents. http://www.gnu.org/software/flex/manual/.

[27] Vern Paxson. Bro: A System for Detecting Network
Intruders in Real-Time. In Computer Networks, Dec 1999.

[28] Jonathan Pincus and Brandon Baker. Mitigations for
Low-level Coding Vulnerabilities: Incomparability and
Limitations.
http://research.microsoft.com/users/jpincus/mitigations.pdf,
2004.

[29] J. Postel and J. Reynolds. Telnet Protocol Specification
(RFC 854), May 1983.

[30] J. Postel and J. Reynolds. RFC 765 - File Transfer
Protocol (FTP), October 1985.

[31] Niels Provos. A Virtual Honeypot Framework. Technical
Report CITI-03-1, Center for Information Technology
Integration, University of Michigan, October 2003.

[32] Thomas H. Ptacek and Timothy N. Newsham. Insertion,
evasion, and denial of service: Eluding network intrusion
detection, January 1998.
http://www.insecure.org/stf/secnet ids/secnet ids.html.

[33] Eric Rescorla. Security holes... Who cares? In Proceedings
of USENIX Security Symposium, August 2003.

[34] DCE 1.1: Remote Procedure Call.
http://www.opengroup.org/onlinepubs/9629399/.

[35] W32.Sasser.Worm, April 2004.
http://securityresponse.symantec.com/avcenter/
venc/data/w32.sasser.worm.html.

[36] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications
(RFC 1889), January 1996.

[37] Umesh Shankar and Vern Paxson. Active Mapping:
Resisting NIDS Evasion Without Altering Traffic. In
Proceedings of IEEE Symposium on Security and Privacy,
May 2003.

[38] Richard Sharpe. Server message block.
http://samba.anu.edu.au/cifs/docs/what-is-smb.html.

[39] Sumeet Singh, Cristian Estan, George Varghese, and Stefan
Savage. The EarlyBird System for Real-time Detection of
Unknown Worms. Technical Report CS2003-0761,
University of California at San Diego, 2003.

[40] Microsoft security bulletin ms02-039, January 2003.
http://www.microsoft.com/technet/treeview/
default.asp?url=/technet/security/bulletin/MS02-039.asp.

[41] The Open Source Network Intrusion Detection System.
http://www.snort.org/.

[42] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How
to 0wn the Internet in Your Spare Time. In Proceedings of
the 11th USENIX Security Symposium, August 2002.

[43] Peter Szor and Peter Ferrie. Hunting for Metamorphic.
Symantec Security Response.

[44] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and
Alexander Aiken. A First Step Towards Automated
Detection of Buffer Overrun Vulnerabilities. In NDSS, 2000.

[45] Nicholas Weaver, Vern Paxson, Stuart Staniford, and
Robert Cunningham. Large Scale Malicious Code: A
Research Agenda. http://www.cs.berkeley.edu/˜nweaver/
large scale malicious code.pdf, 2003.

[46] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very
Fast Containment of Scanning Worms, 2004.
http://www.icsi.berkeley.edu/ nweaver/containment/.

[47] Nick Weaver. The potential for very fast internet plagues.
http://www.cs.berkeley.edu/˜nweaver/warhol.html.

[48] Matthew M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. Technical
Report HPL-2002-172, HP Labs Bristol, 2002.

[49] Rafal Wojtczuk. Defeating Solar Designer’s Non-executable
Stack Patch. http://www.insecure.org/sploits/non-
executable.stack.problems.html, January
1998.

