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1. INTRODUCTION
Technical support contributes 17% of the total cost of ownership

of today’s desktop PCs [3]. An important element of technical sup-
port is troubleshooting misconfigured applications. Misconfigura-
tion troubleshooting is particularly challenging, because configura-
tion information can be shared and altered by multiple applications.
Maintaining healthy configurations of a computer platform with a
large installed base and numerous third-party software packages
has been recognized as a daunting task [1]. The considerable num-
ber of possible configurations and the difficulty in specifying the
“golden state” [4], the perfect configuration, have made the prob-
lem appear to be intractable.

In this paper, we address the problem of misconfiguration trou-
bleshooting. There are two essential goals in designing such a trou-
bleshooting system:

1. Troubleshooting effectiveness: the system should effectively
identify a small set of sick configuration candidates with a
short response time;

2. Automation: the system should minimize the number of man-
ual steps and the number of users involved.

To diagnose misconfigurations of an application on a sick ma-
chine, it is natural to find a healthy machine to compare against [7].
Then, the configurations that differ between the healthy and the sick
are misconfiguration suspects. However, it is difficult to identify a
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Figure 1: PeerPressure Troubleshooter Architecture and its
Operations
healthy machineautomatically. Involving the user in confirming
the correct application behavior seems unavoidable

We avoid this extensive manual identification work by observ-
ing that the golden state is in the mass. In other words, an appli-
cation functions correctly onmostof machines, therefore we can
use the statistics from a large enough sample set as the ”statistical
golden state”. The statistical golden state can be combined with
Bayesian statistics to identify anomalous misconfigurations on sick
machines. Then, the misconfigurations can be corrected by com-
forming to the majority of the samples. We name this statistical
troubleshooting methodPeerPressure.

To simplify our presentation, we focus our discussion on a par-
ticular type of important configuration data, the Windows Reg-
istry [2], which provides hierarchical persistent storage for named,
typed entries. The principles and techniques are directly applicable
to other types of configuration stores such as files and other plat-
forms such as Unix.

2. PEERPRESSURE ARCHITECTURE
Figure 1 illustrates the architecture and the operations of a Peer-

Pressure troubleshooting system. A troubleshooting user first ex-
presses the symptom of the sick machine through the use of “App
Tracer”. “App Tracer” records the registry entries that are used as
input to the failed application execution. We term these misconfig-
uration candidatessuspects. Then, the user feeds the suspects into
the PeerPressure troubleshooter which has three modules: a canon-
icalizer, a searcher/fetcher, and a statistical analyzer. The canon-
icalizer turns any user- or machine-specific entries into acanon-
icalized form. For example, user names and machine names are
all replaced with constant strings “USERNAME” and “MACHI-
NENAME”, respectively. Then, PeerPressure searches for a sam-
ple set of machines that run the same application. The search can



Name Suspect Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

e1 .jpg/contentType image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg
e2 .htc/contentType not exist text/x-comp text/x-comp text/x-comp text/x-comp text/x-comp
e3 url-visited yahoo hotmail nytimes SFGate google friendster

Table 1: Intuition behind PeerPressure Sick Probability Formulation

be performed over a database of machine configuration snapshots
or through a peer-to-peer troubleshooting community. (In this pa-
per, we base our discussions on the GeneBank database approach.
For the peer-to-peer approach, we refer interested readers to [6].)
Next, PeerPressure fetches the respective values of the canonical-
ized suspects from the sample set machines. The statistical ana-
lyzer then performs statistical analysis, calculates the probability
for each suspect to be sick, and outputs a ranking report based on
the sick probability. Finally, PeerPressure conducts trial-and-error
fixing, by stepping down the ranking report and replacing the possi-
bly sick value with the most popular value from the sample set. The
fixing step interacts with the user to determine whether the sickness
is cured. This last step is not shown in the figure; and we will not
further address it for the rest of the paper.

3. THE PEERPRESSURE ALGORITHM
We use an example to illustrate the intuition and objectives of

formulating the sick probability calculation for each suspect. Ta-
ble 1 shows three suspects (e1,e2,e3) and their respective values
from a sample set of machine configuration snapshots from our
database. A cursory examination of the sample set suggests that
e1 is probably healthy;e2 is more likely to be sick thane3 because
all samples have the same value, while the suspect value is differ-
ent.

In fact, we have seen two types of state in canonicalized con-
figuration entries: (I) application configuration states such ase1
and e2, (II) operational states such as timestamps, usage counts,
caches, seeds for random number generators, window positions,
and MRU (Most Recently Used)-related information. For trou-
bleshooting configuration failures, we are mostly concerned with
type I entries. Type II entries constitute the “natural biological di-
versity” among machines and are less likely to be root causes of
configuration failures. In our example,e3 belongs to category II.

Therefore, the objective for the sick probability formulation is
not only to capture the anomaly from the golden mass, but also to
weed out the operational state false positives.

We apply empirical Baysian estimation to derive the sick prob-
ability of a suspect entry:P(sick) = N+c

N+ct+cm(t−1) whereN is the
number of samples,t is the number of suspects,c is the cardinality
of the entry value, andm is the number of samples that matches
the suspect value. This formula produces desirable results: Fixing
all parameters exceptm, asm increases, the sick probability de-
creases; whenm= 0, the derivative of the formula with respect to
c is negative, indicating a decreasing trend of the sick probability
asc increases. For detailed derivation and analysis of this formula,
please see [5].

4. EVALUATION RESULT HIGHLIGHTS
We have prototyped a PeerPressure troubleshooter and evaluated

its troubleshooting effectiveness over 20 real-world troubleshoot-
ing cases using a database that consists of registry snapshots from
87 machines. Registry size ranges from 77,517 to 333,193 entries,
with a median of 198,608 entires. 87% of the registry entries have
a cardinality of 1, 94% no more than 2, and 97% no more than 3.

The 20 troubleshooting cases for our experiments were all real-
world failures that have troubled some users. And we have the
knowledge of their root-cause misconfiguration a priori. There-
fore, we use the ranking of the root-cause entry as our evaluation
metric. To allow parameterized experiments, we reproduced these
failures on a real-usage desktop using configuration user interface
(e.g., Control Panel applets) to inject the failures whenever possi-
ble, and using direct editing of the Registry for the remaining cases.
Then, we used “App Tracer” to get the suspects (see Figure 1). Fi-
nally, we ran PeerPressure to produce the ranking reports.

For the 20 cases, the number of suspects is large: ranging from
8 to 26,308, with a median of 1,171. Therefore, PeerPressure is an
indispensible step of troubleshooting since sieving through these
large suspect sets for root-cause entries is like finding a needle in
a haystack. PeerPressure can effectively pinpoint the root-cause
misconfigurations for 12 of the 20 cases. For the remaining ones,
PeerPressure significantly narrows down the number of root-cause
candidates by three orders of magnitude. For detailed presentation
and analysis of the results, please see [5].
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