
User-Driven Access Control:
Rethinking Permission Granting in Modern Operating Systems

Franziska Roesner, Tadayoshi Kohno
{franzi, yoshi}@cs.washington.edu

University of Washington

Alexander Moshchuk, Bryan Parno, Helen J. Wang
{alexmos, parno, helenw}@microsoft.com

Microsoft Research

Crispin Cowan
crispin@microsoft.com

Microsoft

Abstract— Modern client platforms, such as iOS, Android,
Windows Phone, Windows 8, and web browsers, run each ap-
plication in an isolated environment with limited privileges. A
pressing open problem in such systems is how to allow users
to grant applications access to user-owned resources, e.g., to
privacy- and cost-sensitive devices like the camera or to user
data residing in other applications. A key challenge is to en-
able such access in a way that is non-disruptive to users while
still maintaining least-privilege restrictions on applications.

In this paper, we take the approach of user-driven access con-
trol, whereby permission granting is built into existing user ac-
tions in the context of an application, rather than added as an
afterthought via manifests or system prompts. To allow the sys-
tem to precisely capture permission-granting intent in an ap-
plication’s context, we introduce access control gadgets (ACGs).
Each user-owned resource exposes ACGs for applications to em-
bed. The user’s authentic UI interactions with an ACG grant
the application permission to access the corresponding resource.
Our prototyping and evaluation experience indicates that user-
driven access control enables in-context, non-disruptive, and
least-privilege permission granting on modern client platforms.

1 Introduction
Many modern client platforms treat applications as distinct,
untrusted principals. For example, smartphone operating sys-
tems like Android [2] and iOS [4] isolate applications into
separate processes with different user IDs, and web browsers
implement the same-origin policy [28], which isolates one
web site (or application) from another. By default, these prin-
cipals receive limited privileges; they cannot, for example,
access arbitrary devices or a global file system. From a se-
curity perspective, this is an improvement over desktop sys-
tems, which treat users as principals and grant applications
unrestricted resource access by virtue of installation.

Unfortunately, these systems provide inadequate function-
ality and security. From a functionality standpoint, isolation
inhibits the client-side manipulation of user data across appli-
cations. For example, web site isolation makes it difficult to
share photos between two sites (e.g., Picasa and Flickr) with-
out manually downloading and re-uploading them. While
applications can pre-negotiate data exchanges through IPC
channels or other APIs, requiring every pair of applications
to pre-negotiate is inefficient or impossible. From a secu-
rity standpoint, existing access control mechanisms tend to
be coarse-grained, abrasive, or inadequate. For instance, they
require users to make out-of-context, uninformed decisions
at install time via manifests [2, 5], or they unintelligently
prompt users to determine their intent [4, 21].

Thus, a pressing open problem is how to allow users to
grant applications access to user-owned resources: privacy-
and cost-sensitive devices and sensors (e.g., the camera, GPS,
or SMS), system services and settings (e.g., the contact list
or clipboard), and user content stored with various applica-
tions (e.g., photos or documents). To address this problem,
we advocate user-driven access control, whereby the system
captures user intent via authentic user actions in the context
of applications. Prior work [22, 32, 33] applied this principle
largely in the context of least-privilege file picking, where an
application can access only user-selected files; in this paper,
we generalize it for access to all user-owned resources.

Furthermore, we introduce access control gadgets (ACGs)
as an operating system technique to capture user intent. Each
user-owned resource exposes UI elements called ACGs for
applications to embed. The user’s authentic UI interactions
with an ACG grant the embedding application permission to
access the corresponding resource. Our design ensures the
display integrity of ACGs, resists tampering by malicious ap-
plications, and allows the system to translate authentic user
input on the ACGs into least-privilege permissions.

The ACG mechanism enables a permission granting sys-
tem that minimizes unintended access by letting users grant
permissions at the time of use (unlike the manifest model)
and minimizes the burden on users by implicitly extracting a
user’s access-control intentions from his or her in-application
actions and tasks (rather than, e.g., via prompts).

In addition to system-controlled resources, we generalize
the notion of user-driven access control to sensitive resources
controlled by applications with application-specific ACGs.
Applications (e.g., Facebook) that provide APIs with privacy
or cost implications (e.g., allowing access to friend informa-
tion) can expose ACGs to require authentic user actions be-
fore allowing another application to invoke those APIs.

We built a prototype of user-driven access control into an
existing research system [37] that isolates applications based
on the same-origin policy. A quantitative security evalua-
tion shows that our system prevents a large swath of user-
resource vulnerabilities. A study of today’s Android appli-
cations shows that our design presents reasonable tradeoffs
for developers. Finally, we conduct two different user stud-
ies (with 139 and 186 users, respectively); the results indicate
that user-driven access control better matches user expecta-
tions than do today’s systems.



2 State of the Art in Permission Granting

We motivate our work by identifying shortcomings in existing
permission granting systems.

Global Resources. Traditional desktop systems expose user-
owned resources to applications simply by globalizing them.
Similarly, smartphone OSes expose a global clipboard to
applications. While user-friendly in the benign case, this
model violates least-privilege and allows unintended accesses
(e.g., [9]). Our user studies (Section 6.2) indicate that such
exposures contradict users’ expectations (e.g., users expect
data on the clipboard to remain private until pasted).

Manifests. Applications in Android [2] and Facebook [10]
use install-time manifests to request access to user-owned re-
sources. Once the user agrees, the installed application has
permanent access to the requested resources. This violates
least-privilege, as installed applications may access these re-
sources at any time, not just when needed to provide intended
functionality. Furthermore, studies indicate that many appli-
cations ask for more permissions than needed [6, 11] and that
users pay little attention to, and show little comprehension of,
Android manifests [12]. Recent Android malware outbreaks
suggest that users install applications that ask for excessive
permissions [5].

While we argue against user-facing manifests, manifests
are a useful mechanism for communication between an ap-
plication and the system; an application can specify the max-
imum set of permissions it may need, and the system can then
restrict the application accordingly to mitigate the effects of
an application compromise.

Prompts. By contrast, iOS [4] prompts users the first time an
application wishes to access a resource. Windows displays a
User Account Control prompt [21] when an application re-
quires additional privileges to alter the system. Nascent sup-
port for user-owned resources in HTML5 involves prompting
for geolocation access.

While these prompts attempt to verify user intent, in prac-
tice, the burden they place on users undermines their use-
fulness. Specifically, when the user intends to grant ac-
cess, the prompts seem unnecessary, teaching users to ignore
them [23, 39].

No Access. Some systems simply do not support appli-
cation access to user-owned resources. For example, to-
day’s web applications generally cannot access a user’s lo-
cal devices. Browser plugins are an exception, but they
have access to all user-owned resources, which violates least-
privilege. Existing specifications for permitting access to
user-owned resources [35] note only that permission-granting
should be tied to explicit user actions, but they do not ad-
dress how these should be mapped to system-level access
control decisions. Research browsers and browser operating
systems [8, 15, 34, 36, 37] also have not addressed access
control for user-owned resources.

Figure 1: Application Model. As in web mashups, applications
may embed other applications. Each application is isolated and runs
atop a generic runtime (e.g., a browser renderer or Win32 library).

3 Goals and Context
We consider the problem of allowing a system to accurately
capture a user’s access control decisions for user-owned re-
sources. Learning from existing systems, our goals are
to enable permission granting that is (1) in-context (unlike
manifests), (2) non-disruptive (unlike system prompts), and
(3) least-privilege (unlike most previous systems).

3.1 System Model

We assume (see Figure 1) that applications are isolated from
each other according to some principal definition (such as the
same-origin policy), share no resources, and have no access to
user-owned resources by default. Applications may, however,
communicate via IPC channels. Some existing systems (e.g.,
browsers and smartphones) support many of these features
and could be modified to support the rest.

We further assume that applications (and their associated
principals) may embed other applications (principals). For
instance, a news application may embed an advertisement.
Like all applications, embedded principals are isolated from
one another and from the outer embedding principal.1 We as-
sume that the kernel has complete control of the display and
that applications cannot draw outside of the screen space des-
ignated for them. An application may overlap, resize, and
move embedded applications, but it cannot access an embed-
ded application’s pixels (and vice versa) [31, 36]. Further-
more, the kernel dispatches UI events only to the application
with which the user is interacting. The prototype system [37]
that we use to implement and evaluate user-driven access con-
trol supports these properties.

To provide access control for user-owned resources, a sys-
tem must support both access control mechanisms and access
control policies. For the former, to simplify the discussion,
we assume that for each user-owned resource, there is a set
of system APIs that perform privileged operations over that
resource. The central question of this work is how to specify
policies for these mechanisms in a user-driven fashion.

1Research browser Gazelle [36] advocated this isolation. Commercial
browsers like Chrome and IE have not yet achieved it, instead putting all
principals embedded on one web page into the same OS process. Today’s
smartphones do not yet support cross-principal content embedding, but we
anticipate this to change in the future.

2



3.2 User-Owned Resources

In this work, we study access control for user-owned re-
sources. Specifically, we assume that by virtue of being in-
stalled or accessed, an application is granted isolated access
to basic execution resources, such as CPU time, memory, dis-
play, disk space, and network access2.

We consider all other resources to be user-owned, includ-
ing: (1) Devices and sensors, both physical (e.g., micro-
phone, GPS, printer, and the phone’s calling and SMS ca-
pabilities) and virtual (e.g., clipboard and contacts), (2) user-
controlled capabilities or settings, such as wiping or reboot-
ing the device, and (3) content (e.g., photos, documents, or
friends lists) residing in various applications.

3.3 Threat Model

We aim to achieve our above-stated goals in the face of the
following threat model. We consider the attacker to be an un-
trusted application, but we assume that the kernel is trustwor-
thy and uncompromised; hardening the kernel is an orthogo-
nal problem (e.g., [27, 30]). We assume attacker-controlled
applications have full network access and can communicate
via IPC to other applications on the client side. We classify
potential threats to user-owned resources into three classes:

1. When: An application accesses user-owned resources at
a moment when the user did not intend.

2. Who: An application other than the one intended by the
user accesses user-owned resources.

3. What: An application grants another application access
to content other than that specified by the user. This false
content may be malicious content intended to exploit
another application, and/or it may be a user’s authentic
content, but not the content to which the user intended
to grant access (leaked content).

In this work, we restrict this model in two ways. First, we
do not address the problem of users misidentifying a mali-
cious application as a legitimate application. For example, a
user may mistakenly grant camera access to a fake, malicious
Facebook application. Principal identification is a comple-
mentary problem (even if solved, we must still address user-
driven access control for well-identified principals). Second,
we consider out of scope the problem of “what” data is ac-
cessed. Input sanitization to protect against malicious con-
tent is a separate research problem. Furthermore, applica-
tions possessing user data can already leak it via network and
IPC communication. Techniques like information flow con-
trol [40] may help remove this assumption but are orthogonal.

In this work, we aim to raise the bar for malicious applica-
tions attempting to access user-owned resources without user
authorization, and to reduce the scope of such accesses.

2Network access is part of today’s manifests. We believe that approving
network access for safety is too much to ask for most users. Nevertheless,
we allow an application to provide a non-user-facing manifest to the OS to
enable better sandboxing (e.g., by restricting network communication to a
whitelist of domains).

Figure 2: System Overview. Resource monitors mediate access
to user-owned resources. They capture the user’s intent to grant an
application access to that resource via (1a) UI elements in the form
of access control gadgets, and/or via (1b) permission-granting input
sequences detected by the kernel.

4 Design: User-Driven Access Control

The fundamental problem with previous permission granting
models is that the system has no insight into the user’s in-
application behaviors. Consequently, the system cannot im-
plicitly learn the user’s permission-granting intent and must
ask the user explicitly (e.g., via an out-of-context manifest or
a system prompt uncoordinated with the user’s in-application
behavior). Our goal is to bridge this disconnect between a
user’s activities in an application and the system’s permission
management for sensitive resources. In particular, we aim
to enable user-driven access control, which allows the user’s
natural UI actions in the context of an application to govern
the access control of user-owned resources. To achieve this
goal, we need (1) applications to build permission-granting
UIs into their own context, and (2) the system to obtain the
user’s authentic permission-granting intent from his or her in-
teraction with these UIs. We introduce access control gadgets
(ACGs) as this permission-granting UI, a key mechanism to
achieve user-driven access control.

Figure 2 gives an overview of our system. Each type of
user-owned resource (e.g., the abstract camera type) has a
user-driven resource monitor. This resource monitor (RM)
is a privileged application that exclusively mediates access to
all physical devices (e.g., multiple physical cameras) of that
resource type and manages the respective access control state.
The RM exposes to applications (1) access control gadgets
(ACGs) and (2) device access APIs. ACGs are permission-
granting UI elements which applications can embed. A user’s
authentic interactions with the ACGs (e.g., arrow 1a in Fig-
ure 2) allow the RM to capture the user’s permission-granting
intent and to configure the access control state accordingly.
For example, clicking on the camera ACG grants its host ap-
plication permission to take a picture with the camera. Ap-
plications can invoke the device access APIs exposed by the
RM only when granted permission.

3



Figure 3: Example Access Control Gadgets (ACGs). The circled
UI elements are application-specific today, but in our model, they
would be ACGs for (a) content picking, (b) copy & paste, or (c)
device access.

Users can also grant permissions via user-issued
permission-granting input sequences. For example, the
camera RM may designate the Alt-P key combination or the
voice command “Take a picture” as the global input sequence
for taking a picture. Users can then use these directly to grant
the permission to take a picture (arrow 1b in Figure 2).

ACGs apply to a broad range of access control scenarios,
including device access (e.g., camera and GPS), system ser-
vice access (e.g., clipboard and wipe-device), on-device user
data access (e.g., address book and autocomplete data), and
application-specific user data access (e.g., Facebook’s friends
list). Figure 3 gives a few examples. We later describe our im-
plementation of a representative set of ACGs in Section 5.3.

An RM (e.g., a camera RM) may manage multiple physical
devices (e.g., multiple cameras). The RM provides a device
discovery API so that an application can choose to employ a
specific physical device. An RM can also incorporate new UI
elements into its ACG(s) when a new device (e.g., a new cam-
era with additional menu options) is plugged into the system.
An RM must be endorsed (and signed) by the OS vendor and
trusted to manage its resource type; new RMs are added to
the system like device drivers (e.g., by coming bundled with
new hardware or downloaded). In this paper, we will not fur-
ther discuss these aspects of RM design and instead focus on
authentically capturing and carrying out user intent.

In the rest of this section, we first present our design en-
abling the system to obtain authentic user interactions with an
ACG (Section 4.1); we defer the design of specific ACGs to
Section 5.3. Our system supports a variety of access seman-
tics (Section 4.2), such as one-time, session, and permanent
access grants; it also supports ACG composition (Section 4.3)
to reduce the number of user actions required for granting
permissions. In Section 4.4, we generalize user-driven ac-
cess control to allow all applications to act as RMs and ex-
pose ACGs for application-specific resources. Finally, Sec-
tion 4.5 describes alternate ways in which users can grant per-
missions via kernel-recognized permission-granting input se-
quences that arrive via keyboard, mouse, or voice commands.

4.1 Capturing User Intent with ACGs

To accurately capture the user’s permission-granting intent,
the kernel must provide a trusted path [38] between an ACG
and the user. In particular, it must ensure the integrity of
the ACG’s display and the authenticity of the user’s input;
we discuss these protections here. Helping the user distin-
guish forged ACGs from real ACGs is less critical; an entirely
forged ACG (i.e., not a real ACG with a forged UI) cannot
grant the embedding application any permissions.

4.1.1 ACG→User: Ensuring Display Integrity

It is critical that the user sees an ACG before acting on it.
We ensure the display integrity of ACGs by guaranteeing the
following three properties.

1. Display isolation: The kernel enforces display isolation
between different embedded principals (Section 3.1),
ensuring that an application embedding an ACG cannot
set the ACG’s pixels.

2. Complete visibility: The kernel ensures that active ACGs
are completely visible, so that malicious applications
cannot overlay and manipulate an ACG’s display to mis-
lead users (e.g., overlaying labels to reverse the meaning
of an ACG’s copy/paste buttons). To this end, we require
that ACGs be opaque and that the kernel only activate an
ACG when it is entirely visible (i.e., at the top of the dis-
play’s Z ordering). An ACG is deactivated (and greyed
out) if any portion becomes obscured.

3. Sufficient display duration: The kernel ensures that the
user has sufficient time to perceive an active ACG. With-
out this protection, applications can mount timing-based
clickjacking attacks in which an ACG appears just as the
user is about to click in a predictable location. Thus, the
kernel only activates an ACG after it has been fully vis-
ible in the same location for at least 200 ms, giving the
user sufficient time to react (see [19]). We use a fade-in
animation to convey the activation to the user, and tem-
porarily deactivate an ACG if it moves. We postulate
(as do the developers of Chrome [7] (Issue 52868) and
Firefox [24] (Advisory 2008-08)) that the delay does not
inconvenience the user in normal circumstances.

Customization. There is a tension between the consistency
of an ACG’s UI (that conveys permission-granting semantics
to users) and the UI customization desired by developers to
better build ACGs into application context. For example, de-
velopers may not wish to use the same geolocation ACG for
different functions, such as “search nearby,” “find deals,” and
“check in here.” However, allowing applications to arbitrar-
ily customize ACGs increases the attack surface of an RM
and makes it easy for malicious applications to tamper with
an ACG’s display (e.g., a malicious application can disguise
a gadget that grants geolocation access as one that does not).

With respect to customization, we consider three possible
points in the design space.

4



1. Disallow customization. Disallowing customization en-
sures display integrity, but might incentivize developers
to ask for permanent access unnecessarily so that they
can design their desired UIs.

2. Limited dynamic customization. ACGs can be cus-
tomized with parameters, such as color and size, with
a fixed set of possible values for each parameter.

3. Arbitrary customization with a review process. Another
possibility is to allow arbitrary customization but require
explicit review and approval of custom ACGs (similar to
how applications are reviewed in today’s “app stores”).
In this model, application developers use the available
ACGs by default, but may submit customized ACGs for
approval to an “ACG store.” This option incentivizes
developers to use the standard non-customized ACGs in
the common case, and ensures display integrity for the
approved ACGs that are submitted to the “store.”

In our evaluation of existing Android applications (Sec-
tion 6.7), we find that gadgets with limited customization
would be sufficient in most cases.

4.1.2 User→ACG: Interpreting Authentic User Input

In addition to guaranteeing the display integrity of ACGs as
described above, we must ensure (1) that input events on
ACGs come authentically from the user, and (2) that the ker-
nels grants permissions to the correct application.

For (1), our kernel enforces input event isolation, i.e., the
kernel dispatches user input events originating from physical
devices (e.g., keyboard, touchscreen, mouse, or microphone)
only to the in-focus application. No application can artifi-
cially generate user input for other applications. Thus, when
an ACG is in focus and the user acts on it, the user’s input, dis-
patched to the corresponding RM, is guaranteed to be authen-
tic. Equally important, the kernel must protect input-related
feedback on the screen. For example, the kernel controls the
display of the cursor and ensures that a kernel-provided cur-
sor is shown when the mouse hovers over a gadget. This pre-
vents a malicious application from confusing the user about
where they are clicking within an ACG.

For (2), it is straightforward for the kernel to determine
the correct application to which to grant permissions when
there is a single level of embedding, i.e., when a top-level ap-
plication embeds an ACG. However, care must be taken for
multi-level embedding scenarios. For example, a top-level
application may embed another application which in turn em-
beds an ACG. Such application nesting is a common pattern
in today’s web and can be arbitrarily deep.

Thus, the kernel must prevent an embedded application
from tricking users into believing that the ACG it embeds is
owned by the outer, embedding application. For example, a
malicious ad embedded in publisher.com might embed an
ACG for geolocation access. If the ad’s UI mimics that of the
publisher, the user may be tricked into thinking that the ACG
will grant access to the publisher rather than to the ad.

Algorithm 1 : Can Principal X embed ACG G? If CanEmbed
returns true, the kernel embeds an active instance of ACG G. Other-
wise, it embeds an inactive ACG. X’s parent may specify whether
X may embed a particular ACG either statically when embed-
ding X, or dynamically in response to a kernel-initiated upcall to
CheckNestedPermission().

1: function CanEmbed(X , G)
2: if X is a top-level application then
3: Return true
4: if X .Parent allows X to embed G then
5: Return CanEmbed(X .Parent, G)
6: else
7: Return false

Figure 4: Access Semantics. Access duration, relationship with
user actions, and security implications.

To prevent such confusion, we enforce the restriction that
only a “top-level” or outermost application can embed ACGs
by default. We postulate that users are more cognizant of top-
level applications than nested ones. However, we allow an
application to permit its nested applications to embed ACGs.
For this purpose, we introduce PermissionToEmbedACG, a
new type of (resource-specific) permission. Consider an ap-
plication A that embeds application X, which attempts to em-
bed an ACG for a resource. Algorithm 1 shows how the ker-
nel determines whether application X may embed an active
ACG for that resource. If this permission is denied, the ker-
nel embeds an inactive gadget. If application X already has
access to a resource (via prior session or permanent access
grants), it retains this access, but embedding X does not grant
application A access to that resource — nor do user actions
on ACGs in embedded applications grant permissions to their
embedding ancestors.

4.2 Access Semantics

After capturing a user’s intent to grant access — via an ACG
or a permission-granting input sequence (Section 4.5) — a re-
source monitor must act on this intent. We discuss the mecha-
nisms for granting access in our implementation in Section 5;
here we consider the semantics of different types of access.

Figure 4 illustrates access durations, their relationship with
user actions, and their respective security implications. There
are four types of access durations that may be granted to ap-
plications: one-time (such as taking a picture), session (such
as video recording), scheduled (access scheduled by events,
such as sending a monthly SMS reminder for paying rent),
and permanent.

5



For both one-time and session access, user actions natu-
rally convey the needed access duration. For example, when
a user takes a photo, the click on the camera ACG is coupled
with the need for one-time access to the camera. Similarly,
when recording a video, the user’s toggling of the record but-
ton corresponds to the need to access the video stream. We
characterize this relationship with user actions as UI-coupled
access. With ACGs, UI-coupled access can be made least-
privilege. For long-running applications, the system may alert
the user about an ongoing session access after the user has not
interacted with the application for some time.

In contrast, scheduled and permanent access are UI-
decoupled: the user’s permission-granting actions are decou-
pled from the access. For example, the user might grant an
application permanent camera access; later accesses to this
resource need not be directly coupled with any user actions. It
is more difficult to make UI-decoupled access least-privilege.

For scheduled scenarios, we propose schedule ACGs — us-
ing common triggers like time or location as scheduling pa-
rameters — to achieve least-privilege access. For example,
the user explicitly schedules access for certain times (e.g.,
automatically access content every 12 hours to back it up)
or when in a certain location (e.g., send an SMS when the
location criteria is met). In these scenarios, users must al-
ready configure these conditions within the application; these
configurations could be done via a schedule ACG presented
together with resource ACGs in the context of the application.

However, scheduled access does not encompass unconven-
tional events (e.g., when a game’s high score is topped). For
those scenarios, applications must request permanent access.
In our system, permanent access configuration is done via an
ACG. To encourage developers to avoid requesting unnec-
essary permanent access, RMs can require additional user
interactions (e.g., confirmation prompts), and security pro-
fessionals or app store reviewers can apply greater scrutiny
(and longer review times) to such applications. Our study of
popular Android applications (Section 6.3) shows that a mere
5% require permanent access to user-owned resources, mean-
ing users’ exposure to prompts will be limited and that extra
scrutiny is practical.

It is the RM’s responsibility to provide ACGs for differ-
ent access semantics (if at all — devices like the printer and
the clipboard may support only one-time access). Each RM
is further responsible for configuring appropriate policies for
applications running in the background. For example, unlike
access to the speaker, background video recording might not
be permitted.

The user must be able to revoke access when the associ-
ated ACG is not present. A typical approach is to allow the
user to issue a secure attention sequence [17] like Ctrl-Alt-
Del (or to navigate system UI) to open a control panel that
shows the access control state of the system and allows revo-
cation. Prior work also suggests mechanisms for intuitively
conveying access status [16].

4.3 ACG Composition

Some applications may need to access multiple user-owned
resources at once. For example, an application may take a
photo and tag it with the current location, requiring both cam-
era and geolocation access, or support video chat, requiring
camera and microphone access. It would be burdensome for
users to interact with each ACG in turn to grant these per-
missions. To enable developers to minimize the number of
user actions in such scenarios, we allow applications to em-
bed a composition ACG (C-ACG) exposed by a composition
resource monitor. A single user action on a composition ACG
grants permission to all involved user-owned resources.

A composition RM serves as a UI proxy for the RMs of the
composed resources: when a user interacts with a C-ACG, the
C-ACG invokes privileged API calls to the involved resource
RMs (available only to the composition RM). The invocation
parameters include (1) the application’s anonymous ID (in-
forming the RM to which application to grant permissions),
(2) an anonymous handle to the application’s running instance
(to allow return data, if any, to be delivered), and (3) a trans-
action ID (allowing the application instance to group data re-
turned from different RMs). This design allows the C-ACG to
be least-privilege, with no access to the composed resources.

We disallow arbitrary composition, which could allow ap-
plications to undermine our goal of least-privilege access. For
example, an application that only needs camera access could
embed a C-ACG composing all user-owned resources. In-
stead, the composition RM exposes a fixed set of composi-
tions that can only be extended by system or RM updates. As
with other RMs, the composition RM is responsible for the
UI of its ACGs. In our evaluation (Section 6.7), we find that
composition is rarely used today (only three types of com-
position appear and are used in only 5% of the applications
we surveyed), suggesting that this fixed set of compositions
would suffice.

4.4 Generalization: Application-Specific ACGs

So far, we have presented ACGs for system resources. Now,
we generalize this notion to application-specific resources
with application-specific ACGs.

Today, applications expose APIs allowing other applica-
tions to access their services and resources. We argue that an
application should also be able to expose ACGs for its user-
sensitive services, thereby requiring authentic user actions to
permit the corresponding API access. For example, Facebook
might expose an ACG for accessing the Facebook friends
list. As another example, applications can expose file-picking
ACGs, ensuring that only content authentically picked by the
user is shared with other applications (see Section 5.3).

An application exposing application-specific ACGs must
register itself as a RM and specify its ACGs to the kernel.

Embedding an application-specific ACG is similar to a web
mashup where app1.com embeds an iframe sourced from
app2.com. One key distinction is that an application-specific

6



ACG grants permissions to its embedding application X only
if X’s ancestors granted PermissionToEmbedACG down the
nesting hierarchy (Section 4.1.2).

4.5 Permission-Granting Input Sequences

Instead of interacting with UI elements, some users prefer al-
ternate input methods, e.g., using keyboard, mouse, touch,
or voice commands. For example, some users prefer keying
Ctrl-C to clicking on the “copy” button or prefer drag-and-
drop with a mouse to clicking on copy-and-paste buttons. In
addition to the visible ACGs exposed by RMs, we thus sup-
port permission-granting sequences detected by the kernel.
While prior work (Section 7) has suggested specific reserved
gestures [14, 29, 31], we establish input sequences as first-
class primitives for supporting user-driven access control.

System RMs may register permission-granting input se-
quences with the kernel. By monitoring the raw stream of
input from the user, the kernel can detect these authentic in-
put events and dispatch them — along with information about
the application with which the user is interacting — to the ap-
propriate RM. The RM then grants the application the asso-
ciated permission. For example, the camera RM registers the
voice command “Take a picture” as a permission-granting in-
put sequence. When the user says this while using an applica-
tion, the kernel interprets it as a registered input sequence and
sends the event and the application information to the camera
RM. The camera RM then acts on this user intent to grant the
application the permission to take a picture.

Sequence ownership. As with ACG ownership as described
in Section 4.1.2, determining to which application a sequence
should be applied is more complex with nested applications.
We take the same approach here: by default, the sequence is
applied to the top-level application, which can permit nested
applications to receive permission-granting sequences with
the PermissionToReceiveSequence permission.

Sequence conflicts. We consider two kinds of sequence con-
flicts: (1) Two RMs may attempt to define the same global se-
quence, and (2) applications may assign global sequences to
their own application-specific functionality (e.g., using Ctrl-
C to abort a command in a terminal). The former must be
resolved by the OS vendor in the process of endorsing new
RMs. Note that application-specific RMs are not permitted to
register sequences, as it would make the resolution of cross-
RM conflicts unscalable. For (2), applications are encouraged
to resolve the conflict by using different sequences. How-
ever, they may continue to apply their own interpretations
to input events they receive and simply ignore the associated
permissions. Applications can also implement additional se-
quences internally; e.g., Vi could still use “yy” for internal
copying. However, the data copied would not be placed on the
system clipboard unless the user employed the appropriate
permission-granting input sequence or corresponding ACG.

5 Implementation
We build our new mechanisms into ServiceOS [37], a pro-
totype system that provides the properties described in Sec-
tion 3.1. In particular, the kernel isolates applications accord-
ing to the same-origin policy, and it controls and isolates the
display. Applications have no default access to user-owned
resources and may arbitrarily embed each other; embedded
applications are isolated. The system supports a browser run-
time for executing web applications, as well as some ported
desktop applications, such as Microsoft Word.

We extended ServiceOS with about 2500 lines of C# code
to allow (1) the kernel to capture user intent via ACGs or
permission-granting input sequences (Section 5.1), and (2)
the appropriate RM to act on that intent (Section 5.2). Ta-
bles 1 and 2 summarize the system calls and application up-
calls we implemented to support user-driven access control.
Only the kernel may issue upcalls to applications. Section 5.3
describes end-to-end scenarios via representative ACGs.

5.1 Capturing User Intent

5.1.1 Supporting ACGs

In our system, resource monitors are implemented as sepa-
rate applications that provide access-control and UI logic and
expose a set of access control gadgets.

The EmbedACG() system call allows other applications to
embed ACGs. These applications must specify where, within
the application’s portion of the display, the gadget should be
displayed, the desired user-owned resource, and optionally
the type of gadget (including limited customization param-
eters) and the duration of access, depending on the set of
gadgets exposed by the RM. For instance, to allow a user
to take a picture, an application makes an EmbedACG((x,y),
"camera", "take-picture") call in its UI code, where
“camera” is the resource and “take-picture” is the gadget type
(as opposed to, e.g., “configure-settings” or “take-video”).
When a user clicks on an ACG, the appropriate RM is notified
with an InputEvent() upcall that includes the application’s
ID and a handle for the running instance (both anonymous).

The kernel starts the appropriate RM process (if neces-
sary), binds these embedded regions to that RM, and notifies
it of a new ACG with the StartUp() upcall.

5.1.2 Supporting Permission-Granting Input Sequences

We focus our implementation on the most commonly used
permission-granting input sequences in desktop systems:
keyboard shortcuts for the clipboard (via cut, copy, paste)
and mouse gestures for the transient clipboard (via drag-and-
drop). These implementation details represent the changes
required for any sequence (e.g., Ctrl-P, or voice commands).

We modified the kernel to route mouse and keyboard events
to our sequence-detection logic. Once a permission-granting
sequence is detected, the kernel passes the recognized event
(and information about the receiving application) to the ap-
propriate RM with the InputEvent() upcall.

7



Type Call Name Description

syscall InitContentTransfer(push or pull, dest or src) Triggers the kernel to push or pull content from a principal
upcall StartUp(gadgetId, appId, appHandle) Notifies monitor of a new embedded ACG
upcall InputEvent(gadgetId or inputSequence, appId, appHandle) Notifies monitor of an ACG input event or a recognized sequence
upcall LostFocus(gadgetId, appId, appHandle) Notifies monitor when an ACG loses focus
upcall EmbeddingAppExit(gadgetId, appId, appHandle) Notifies monitor when application embedding an ACG exits

Table 1: System Calls and Upcalls for Resource Monitors. This table shows the system calls available to resource monitors and the
upcalls which they must handle. Each upcall is associated with an ACG instance or permission-granting input sequence.

Type Call Name Description

syscall EmbedACG(location, resource, type, duration) Embeds an ACG in the calling application’s UI
upcall PullContent(windowId, eventName, eventArgs) Pulls content from a principal based on user intent
upcall PushContent(windowId, eventName, eventArgs) Pushes content to a principal based on user intent
upcall IntermediateEvent(windowId, eventName, eventArgs) Issues a DragEnter, DragOver, or DragLeave to a principal
upcall IsDraggable(windowId, x, y) Determines if the object under the cursor is draggable
upcall CheckNestedPermission(windowId, nestedApp, acgType) Determines if a nested application may embed an ACG

Table 2: System Calls and Upcalls for Applications. This table shows the system calls available to applications and the upcalls which
they must handle. The windowId allows a multi-window application to determine which window should respond to the upcall.

Our clipboard RM registers common keyboard shortcuts
for cut, copy, and paste (Ctrl-X, Ctrl-C, and Ctrl-V). To
implement drag-and-drop, the kernel identifies a drag as a
MouseDown followed by a MouseMove event on a draggable
object (determined by IsDraggable() upcalls to the object’s
owner), and it identifies the subsequent MouseUp event as a
drop. To support existing visual feedback idioms for drag-
and-drop, our implementation dispatches Intermediate-
Event() upcalls to applications during a drag action.

5.2 Acting on User Intent

When an RM receives an InputEvent() upcall (i.e., user in-
tent is captured), it grants access in one of two ways, depend-
ing on the duration of the granted access.
Session or Permanent Access: Set Access Control State.
When an application is granted session or permanent ac-
cess to a resource, the resource monitor stores this permis-
sion in an access control list (ACL). This permission is re-
voked either directly by the user, or (in the session-based
case) when the application exits and the RM receives an
EmbeddingAppExit() upcall. While the permission remains
valid (i.e., is reflected in the ACL), the RM allows the appli-
cation to invoke its resource access APIs.
One-Time Access: Discrete Content Transfer. When an ap-
plication is granted one-time access, however, it is not granted
access to the resource’s API directly. Rather, the RM medi-
ates the transfer of one content item from the source to the
destination. This design ensures that the user’s one-time in-
tent is accurately captured. For example, when an applica-
tion receives one-time camera access, it should not be able to
defer its access until later, when the camera may no longer
be directed at the intended scene. To this end, the RM im-
mediately issues an InitContentTransfer() system call,
prompting the kernel to issue a PullContent() upcall to an
application writing to the resource (e.g., a document to print),
or a PushContent() call to an application reading from the
resource (e.g., a picture the RM obtained from the camera).

5.3 End-to-End: Representative ACGs

We implemented ACGs for a representative set of user-driven
access control scenarios, covering device access, cross-
application data sharing, and private data access.
One-Time ACGs. We implemented a camera RM that ex-
poses a one-time ACG allowing the user to take a photo
and immediately share it with the application embedding the
ACG. To capture the photo, the RM leverages existing sys-
tem camera APIs. When a user clicks on the gadget, the RM
(1) issues a call to the camera to take a photo, and (2) issues
an InitContentTransfer() call to the kernel to transfer the
photo to the receiving application. Similarly, our clipboard
RM exposes one-time ACGs for copy, cut, and paste.

The database of a user’s form autocomplete entries (e.g.,
his or her name, address, and credit card numbers) often
contains private data, so we consider it a user-owned re-
source. We implemented an autocomplete RM that exposes
one-time autocomplete ACGs — text boxes of various types,
such as last-name, credit-card, and social-security-number.
When the user finishes interacting with an autocomplete ACG
(entering text, selecting from a drop-down menu, or leav-
ing it blank) and leaves the ACG window, the autocomplete
RM receives a LostFocus() upcall. It uses this as a sig-
nal to update the autocomplete database (if appropriate) and
to pass this text on to the embedding application with an
InitContentTransfer() call.

Finally, we implemented a composition ACG, combining
one-time camera and one-time geolocation access.
Session/Permanent ACGs. We implemented a session-
based geolocation ACG, allowing the user to start and stop
access (e.g., when using a maps application for navigation).
When the user starts a new session, the geolocation RM up-
dates its access control state to allow the application embed-
ding the ACG to access geolocation APIs directly. The appli-
cation can make GetCurrentLocation() calls via the RM
until the user ends the session (or closes the application).

8



User’s View Application 

Content view from Provider 1 

Content view from Provider 2 

Content view from Provider n 

Content selection 

… 

System’s View 

Kernel 

EmbedACG(contentpick); 

Application 

Content Pick Resource Monitor 

Content Provider 
Resource Monitors 

Choose Content… 

EmbedACG(“content provider 1”); 

EmbedACG(“content provider 2”); 
… 

EmbedACG(“content provider n”); 

“Choose Content…” ACG 

Content Selection ACG 

Content View ACG 

Figure 5: Content Picking via ACGs. An application may
embed a content-picking ACG (the “Choose content...” button
above). When the user clicks on this button, the content-picking RM
presents a content-selection ACG, which displays available content
by embedding application-specific ACGs from each content provider.
The user may select content from one of these content-view ACGs,
thereby enabling the original embedding application to access it.

These mechanisms also support permanent access.
Permission-Granting Input Sequences. As described, we
implemented permission-granting input sequences for copy-
and-paste and for drag-and-drop. To add support for drag-
and-drop, we extended the kernel to make the appropriate
IntermediateEvent() upcalls. Since drag-and-drop is fun-
damentally only a gesture, the drag-and-drop RM exposes no
gadgets; it merely mediates access to the transient clipboard.
ACG-Embedding and Application-Specific ACGs. As a
more complex example, we implemented a content-picking
ACG (a generalization of “file picker”), which an application
can embed to load in the user’s data items from other appli-
cations. We have two security goals in designing this ACG:

1. Least-privilege access to user content: Only the request-
ing application receives access to only the data item
picked by the user. The content-picking RM has no ac-
cess to the picked item.

2. Minimal attack surface: Since the content picker must
retrieve content listings from each content provider ap-
plication, we aim to minimize the attack surface in inter-
actions between the RM and content providers.

Figure 5 illustrates our design for content picking. Each
content provider exposes an application-specific ACG (Sec-
tion 4.4) called a content-view ACG, which allows least-
privilege, user-driven access to user-picked data items in that
content provider. Such a content-view ACG allows each con-
tent provider to intelligently control user interactions with the
content based on its semantics (e.g., Foursquare check-ins or
Facebook friends are specialized types of content that would
lose richness if handled generically).

The content-picking RM exposes two ACGs, a content-
picking ACG and a content-selection ACG. The content-
picking ACG is a button that opens the content-selection ACG
in response to a user click. The content-selection ACG em-
beds content providers’ content-view ACGs. By isolating

content-view ACGs from the content-picking RM/ACGs, we
minimize the attack surface of the content-picking RM.

The content-selection ACG is special in that it contains
other ACGs (the content-view ACGs from content providers).
Thus, when a user interacts with a content-view ACG, its
content provider grants access to the application embedding
the content-picking ACG, but not to the content-picking RM.
More concretely, when the user selects a data item from a
content-view ACG, the kernel issues a PullContent() up-
call to the content provider and a PushContent() upcall to
the application embedding the content-picking ACG.

We implemented a content-picking RM that supports both
the “open” and “save” functionality, with the latter revers-
ing the destinations of PullContent() and PushContent()
upcalls. To evaluate the feasibility of using this RM with
real-world content providers, we implemented an application-
specific content-view ACG for Dropbox, a cloud storage ap-
plication. We leveraged Dropbox’s public REST APIs to
build an ACG that displays the user’s Dropbox files using
a .NET TreeView form; it implements PushContent() and
PullContent() upcalls as uploads to and downloads from
Dropbox, respectively.

Rather than browsing for content, users may wish to search
for a specific item. We extended the content-picking RM to
also support search by letting users type a search query in the
content-selection ACG and then sending the query to each
content provider. Content providers respond with handles to
content-view ACGs containing results, along with relevance
scores that allow the content-selection ACG to properly inter-
leave the results. Note that we only implemented the access-
control actions, not the algorithm to appropriately rank the
results. Existing desktop search algorithms would be suitable
here, though modifications may be necessary to deal with ap-
plications that return bad rankings.

6 Evaluation
Our evaluation shows that (1) illegitimate access to user-
owned resources is a real problem today and will likely be-
come a dominant source of future vulnerabilities. User-driven
access control eliminates most such known vulnerabilities —
82% for Chrome, 96% for Firefox (Section 6.1). (2) Unlike
existing models, our least-privilege model matches users’ ex-
pectations (Section 6.2). (3) A survey of top Android ap-
plications shows that user-driven access control offers least-
privilege access to user-owned resources for 95% of applica-
tions, significantly reducing privacy risks (Section 6.3). In-
deed, (4) attackers have only very limited ways of gaining
unauthorized access in our system (Section 6.4). We find
that (5) system developers can easily add new resources (Sec-
tion 6.5), that (6) application developers can easily incorpo-
rate user-driven access control (Section 6.6), and that (7) our
design does not unreasonably restrict customization (Sec-
tion 6.7). (8) Finally, the performance impact is negligible
(Section 6.8).

9



% We Eliminate by Design
Class of Vulnerability Example Chrome Bugs Firefox Bugs

User data leakage getData() can retrieve fully qualified path during a file drag 90% (19 of 21) 100% (18 of 18)
Local resource DoS Website can download unlimited content to user’s file system 100% (10 of 10) 100% (1 of 1)
Clickjacking Security-relevant prompts exploitable via timing attacks 100% (4 of 4) 100% (1 of 1)
User spoofing Application-initiated forced mouse drag 100% (3 of 3) 100% (4 of 4)
Cross-app exploits Script tags included in copied and pasted content 0% (0 of 6) 50% (1 of 2)

Total 82% (36 of 44) 96% (25 of 26)

Table 3: Relevant browser vulnerabilities. We categorize Chrome [7] and Firefox [24] vulnerabilities that affect user-owned resources;
we show the percentage of vulnerabilities that user-driven access control eliminates by design.

6.1 Known Access Control Vulnerabilities in Browsers

We assembled a list of 631 publicly-known security vulner-
abilities in recent versions of Chrome (2008-2011) [7] and
Firefox (v. 2.0-3.6) [24]. We classify these vulnerabilities
and find that memory errors, input validation errors, same-
origin-policy violations, and other sandbox bypasses account
for 61% of vulnerabilities in Chrome and 71% in Firefox.
Previous work on isolating web site principals (e.g., [15, 36])
targets this class of vulnerabilities.

Our focus is on the remaining vulnerabilities, which repre-
sent vulnerabilities that cross-principal isolation will not ad-
dress. Of those remaining, the dominant category (30% in
Chrome, 35% in Firefox) pertains to access control for user-
owned resources. We sub-categorize these remaining vulner-
abilities and analyze which can be eliminated by user-driven
access control. Table 3 summarizes our results.
User Data Leakage. This class of vulnerability either leads
to unauthorized access to locally stored user data (e.g., un-
restricted file system privileges) or leakage of a user’s data
across web applications (e.g., focus stealing to misdirect sen-
sitive input). User-driven access control only grants access
based on genuine user interaction with ACGs or permission-
granting input sequences.

Nine of the 21 vulnerabilities in Chrome are related to au-
tocomplete functionality. The two that we do not address by
design are errors that could be duplicated in an autocomplete
RM’s implementation (e.g., autocompleting credit card infor-
mation on a non-HTTPS page).
Local Resource DoS. These vulnerabilities allow malicious
applications to perform denial-of-service attacks on a user’s
resources, e.g., downloading content without the user’s con-
sent to saturate the disk. With user-driven access control, such
a download can proceed only following genuine user interac-
tion with ACGs or permission-granting input sequences.
Clickjacking. Both display- and timing-based clickjacking
attacks are eliminated by the fact that each ACG’s UI stack is
completely controlled by the kernel and the RM (Section 4.1).
In particular, our system disallows transparent ACGs and en-
forces a delay on the activation of ACGs when they appear.
User Spoofing. A fundamental property of user-driven ac-
cess control is that user actions granting access cannot be
spoofed. This property eliminates user spoofing vulnerabil-
ities in which malicious applications can gain access by, e.g.,

issuing clicks or drag-and-drop actions programmatically.
Cross-Application Exploits. In cross-application exploits,
an attacker uses content transferred by the user to attack an-
other application (e.g., copying and pasting into vulnerable
applications allows cross-site scripting). As per our threat
model (Section 3.3), we consider the hardening of applica-
tions to malicious input to be an orthogonal problem. How-
ever, we do eliminate one such issue in Firefox: it involves a
malicious search plugin executing JavaScript in the context of
the current page. This attack is eliminated in our system be-
cause cross-application search is possible only via the search
RM, which is isolated from its embedding application.

6.2 User Expectations of Access Semantics

We conducted two surveys to understand user expectations of
access semantics. These studies adhered to human subjects
research requirements of our institution.

As part of a preliminary online user survey with 139 par-
ticipants (111 male and 28 female, ages 18-72), we asked
users about their expectations regarding clipboard access. We
found that most users believe that copy-and-paste already has
the security properties that we enable with user-driven access
control. In particular, over 40% (a plurality, p < 0.0001) of
users believe, wrongly, that applications can only access the
global clipboard when the user pastes. User-driven access
control would match this expectation.

Following these preliminary results, we designed a second
online user survey to assess user expectations regarding ac-
cesses to a broader set of resources and a variety of access du-
rations. We administered this survey to 186 users (154 male
and 31 female, aged 18 to over 70). Unless otherwise noted,
all of the results reported in this section are statistically sig-
nificant according to Pearson’s chi-squared test (p < 0.05).

The survey consisted of a number of scenarios in which
applications access user-owned resources, accompanied by
screenshots from applications. We examined location access,
camera access, and the ability to send SMS across one-time,
session, and permanent durations. In each scenario, we asked
questions to determine (1) when users believe the applica-
tions can access the resource in question, and (2) when users
believe the application should be able to access it.

We used screenshots from existing Android applications
for better ecological validity — using these instead of artifi-
cial applications created for the purposes of this study allows

10



Figure 6: User Expectations of One-Time and Session Access.
For one-time (location, camera, SMS) and session-based (location,
camera) access scenarios, participants were asked (1) can the ap-
plication access the resource before they press the button, and (2)
should it be able to access the resource before they press the button.

us to evaluate real user expectations when interacting with
real applications. 171 (92%) of our participants reported hav-
ing used a smartphone before, 96 (52%) having used Android.
One-Time and Session Access. For one-time and session ac-
cess to resources, we asked users about whether or not appli-
cations can/should access resources before and after interac-
tions with related UI elements. For example, we asked users
whether a map application can/should access their location
before they click the “current location” button; we then asked
how long after that button press the application can/should
access their location. Figure 6 summarizes the results for be-
fore the button press, where we find that, on average across all
resources, most users believe that applications cannot — and
certainly should not be able to — access the resource before
they interact with the relevant UI. These trends are similar for
after the button press. Note that participants were less sensi-
tive about location access, a trend we address below.

To address possible ordering effects, we randomly per-
muted the order in which we asked about the various re-
sources, as well as about the various durations. We found
that question order had no statistically significant effect on re-
sponses, except in the case of SMS access. There, we found
that participants were statistically significantly more sensitive
about an application’s ability to send SMS if they were first
asked about the camera and/or location.

Despite ordering effects, we find that users are less con-
cerned about applications accessing their location than about
accesses to the camera or sending SMS. More formally, we
performed a Mixed Model analysis, modeling ParticipantID
as a random effect. We tested for an interaction between Or-
der and Resource, finding no effect (F(4,4) = 1.5435, p =
0.1901). We did find Resource to be significant (F(2,2) =
9.8419, p < 0.0001), leading us to investigate pairwise dif-
ferences, where we find lower sensitivity to location access.
Indeed, in both one-time and session-based scenarios, most

users indicated that applications can access their location un-
correlated to UI interactions — the opposite of their expecta-
tions in the camera and SMS scenarios. While most users do
believe that these location accesses should be tied to UI in-
teractions, this concern was still statistically significantly less
than for the camera or SMS. We hypothesize that users may
better understand (or consider riskier) the consequences of
unwanted access to camera or SMS.
Permanent Access. To evaluate users’ expectations of per-
manent access, we presented users with two scenarios: one in
which the application pops up a reminder whenever the user
is in a preconfigured location, and one in which the applica-
tion sends an SMS in response to a missed call. 69% of users
identified the first application as requiring permanent loca-
tion access; nevertheless, only 59% of users believed that it
should have this degree of access. In the case of the SMS-
sending application, 62% of users (incorrectly) believe that
the application is only permitted to send SMS when the con-
figured condition is met (a call is missed); 74% of users be-
lieve this should be the case. This finding supports our design
of a schedule ACG as described in Section 4.2.

These results allow us to conclude that user-driven ac-
cess control — unlike existing systems — provides an access
model that largely matches both users’ expectations and their
preferences regarding how their in-application intent maps to
applications’ ability to access resources.

6.3 Access Semantics in Existing Applications

Using 100 popular Android applications (the top 50 paid and
the top 50 free applications as reported by the Android mar-
ket on November 3, 2011), we evaluated how often applica-
tions need permanent access to a resource to perform their
intended functionality. We focused on the camera, location
(GPS and network-based), the microphone, the phone’s call-
ing capability, SMS (sending, receiving, and reading), the
contact list, and the calendar. We examined accesses by nav-
igating each application’s menu until we found functionality
related to each resource requested in its manifest.

Though Android grants an application permanent access to
any resource specified in its manifest, we find that most re-
source accesses (62% of 143 accesses observed across 100
applications) require only one-time or session access in di-
rect response to a user action (UI-coupled). Table 4-A sum-
marizes these results. By using an ACG to guide these in-
teractions, applications would achieve least-privilege access.
Indeed, 91 of the applications we examined require only UI-
coupled access to all user-owned resources. These results in-
dicate that user-driven access control would greatly reduce
applications’ ability to access resources compared to the man-
ifest (permanent access) model currently used by Android.

Only nine applications legitimately require UI-decoupled
access to at least one resource to provide their intended func-
tionality. We describe these scenarios here and present tech-
niques to reduce the need for permanent access in some cases:

11



Access Semantics (A) Customization (B)
UI-Decoupled UI-Coupled Unrelated to primary

(Permanent) (Scheduled) (One-Time/Session) functionality (e.g., ads) Unknown Limited Arbitrary
Camera 0 0 7 0 2 4 1
Location (GPS) 1 3 13 3 1 5 5Location (Network) 0 3 9 8 2
Microphone 0 0 14 0 0 6 4
Send SMS 0 0 3 0 2 3 0
Receive SMS 5 0 0 0 0 N/A N/A
Read SMS 2 2 3 0 2 0 2
Make Calls 0 0 8 0 2 8 0
Intercept Outgoing Calls 1 0 0 0 0 N/A N/A
Read Contacts 2 2 18 0 2 14 2Write Contacts 0 0 13 0 2
Read Calendar 1 1 0 0 1 0 0
Write Calendar 0 0 1 0 3 0 1
Total 12 (8%) 11 (8%) 89 (62%) 11 (8%) 20 (14%) 40 (73%) 15 (27%)

Table 4: Analysis of Existing Android Applications. We analyzed 100 Android applications (top 50 paid and top 50 free), encompassing
143 individual resource accesses. In Table 4-A, we evaluate the access semantics required by applications for their intended functionality.
We find that most accesses are directly triggered by user actions (UI-coupled). Table 4-B examines the customization of existing UIs related
to resource access. Entries marked N/A indicate resources for which access is fundamentally triggered by something other than a user action
(e.g., incoming SMS). We find that limited customization suffices for most existing applications. Note that some accesses could be handled via
a UI-coupled action, but do not currently display such a UI. Thus, the customization columns do not always sum to the UI-coupled column.

• Scheduled Access. Some applications access resources
repeatedly, e.g., the current location for weather or user
content for regular backups. While these accesses (8%
of accesses we examined and 48% of all UI-uncoupled
accesses) must occur fundamentally without direct user
interaction, these applications could use schedule ACGs
as described in Section 4.2 to nevertheless achieve least-
privilege. This technique reduces the number of appli-
cations requiring permanent access from nine to six.
• Display Only. Some permanent access scenarios simply

display content to the user. For example, many home
screen replacement applications require permanent ac-
cess to the calendar or the ability to read SMS because
these data items are displayed on the home screen. At
the expense of customization, these applications could
simply embed relevant applications that display this con-
tent (e.g., the calendar). This technique would prevent
another application from requiring permanent access.
• Event-Driven Access. Certain event-based permissions

fundamentally require UI-decoupled permanent access.
For example, receiving incoming SMS (e.g., by anti-
virus applications or by SMS application replacements)
and intercepting outgoing calls (e.g., by applications that
switch voice calls to data calls) are fundamentally trig-
gered by events other than user input.

Overall, we find that only five (5%) of the applications we
examined truly require full permanent access to user-owned
resources. With user-driven access control, the other 95% of
these applications would adhere to least-privilege and greatly
reduce their exposure to private user data when not needed.

6.4 Gaining Unauthorized Access in Our System

In our system, applications can gain unauthorized access
by (1) launching social-engineering attacks against users or

(2) abusing permanent (non-least-privilege) access.
On the one hand, ACGs and permission-granting input se-

quences may make it easier — compared to more intrusive se-
curity prompts — for malicious developers to design social
engineering attacks. For example, a malicious application
may use geolocation ACGs as circle buttons in a tic-tac-toe
game, or define an application-specific input sequence that
coincides with a permission-granting sequence (e.g., “Push
Ctrl-V to win the game!”).

However, ACGs and permission-granting input sequences
are superior to prompts in their usability and least-privilege
properties. Studies suggest that prompts are ineffective as se-
curity mechanisms, as users learn to ignore and click through
them [23]. Furthermore, usability problems with prompts
make them undesirable in real systems that involve frequent
access control decisions. Indeed, even the resource access
prompts in iOS are generally shown only the first time an
application attempts to access a resource, sacrificing least-
privilege and making these prompts closer to manifests in
terms of security properties. Finally, prompts are also vul-
nerable to social engineering attacks.

Social engineering indicates an explicit malicious intent (or
criminal action) from the application vendor, who is subject
to legal actions upon discovery. This is in contrast to applica-
tions that request unnecessary permanent access or that take
advantage of non-least-privilege systems (e.g., to leak loca-
tion to advertisers) whose malicious intent is much less clear.

Recall from Section 4.2 that our system mitigates the per-
manent access problem by encouraging developers to avoid
requesting unnecessary permanent access and by allowing
users to revoke it. With just 5% of top Android applica-
tions requiring permanent access (Section 6.3), these tech-
niques seem practical. The remaining 95% of applications
can achieve least-privilege with user-driven access control.

12



Extensibility (A) Ease of Use (B)
Kernel RM Browser MS Word

Autocomplete N/A 210 35 N/A
Camera Access N/A 30 20 25
Content Picking N/A 285 100 15
Copy-and-Paste N/A 70 70 60
Drag-and-Drop 70 35 200 45
Global Search N/A 50 10 N/A
Geolocation Access N/A 85 15 N/A
Composed Camera+Geolocation N/A 105 20 N/A

Table 5: Evaluation of Extensibility and Ease of Use. This table
shows the approximate lines of C# code added to the system (Ta-
ble 5-A) and to applications (Table 5-B).

6.5 Extensibility by System Developers

In general, to support a new user-owned resource in the sys-
tem, a system developer must implement a resource monitor
and its associated ACGs. Table 5-A shows the development
effort required to implement the example ACGs described in
Section 5.3, measured in lines of C# code. Adding support for
a new resource rarely requires kernel changes — only drag-
and-drop required minor modifications to the kernel. RM im-
plementations were small and straightforward, demonstrating
that our system is easy to extend.

6.6 Ease of Use by Application Developers

We found that it was easy to modify two existing applica-
tions — the browser runtime and Microsoft Word 2010 — to
utilize user-driven access control. Table 5-B summarizes the
implementation effort required.

For the browser, we used a wrapper around the ren-
dering engine of an existing commercial browser to im-
plement generic support for copy-and-paste, drag-and-drop,
camera and geolocation access, content picking, search,
and autocomplete. To let web applications easily embed
ACGs, we exposed the EmbedACG() system call as a new
HTML tag. For example, a web application would embed a
camera ACG with the tag <acgadget resource="camera"
type="take-picture">. We converted several upcalls into
their corresponding HTML5 events, such as ondrop or
ondragover. Overall, our browser modifications consisted
of a reasonable 450 lines of code; the relevant content is thus
exposed to the underlying HTML, requiring no additional ef-
fort by the web application developer.

We also added support for certain resources into Microsoft
Word by writing a small C# add-in. We replaced the default
cut, copy, and paste buttons with our ACGs, and implemented
the clipboard and drag-and-drop upcalls to insert content into
the current document and to send the currently-selected con-
tent to the kernel as necessary. We also embed our camera
ACG into Word’s UI and modified Word to handle camera
callbacks by inserting an incoming photo into the current doc-
ument. Finally, we added our content picking ACGs to Word
and hooked them to document saving and opening function-
ality. Our add-in only required about 145 total lines of C# and
demonstrates that even large real-world applications are easy
to adapt to take advantage of user-driven access control.

Figure 7: Customization in Android UIs. Examples of UI ele-
ments corresponding to microphone access. The ones on the left
could be accommodated with a standard ACG that offers limited
customization options (e.g., color). The ones on the right require
significant customization, or a change to the application’s UI.

6.7 Customization: Security and Developer Impact

We evaluate the danger of arbitrary customization and the ef-
fect of limiting customization in today’s applications.
Unvetted Arbitrary Customization. In our design, ACGs
offer limited customization options, but application develop-
ers may submit an arbitrarily customized version of an ACG
to a vetting process (see Section 4.1.1). Other systems, such
as the EROS Trusted Window System (EWS) [31], do not re-
quire such vetting. In particular, EWS allows an application
to designate arbitrary portions of the screen as copy and paste
buttons. The application controls the entire display stack, ex-
cept for the cursor, which is kernel-controlled. This design
allows for full application customizability but risks a mali-
cious application using its freedom to deceive the user.

To evaluate the importance of preventing such an attack,
we included in the previously-described 139-participant user
study (Section 6.2) a task in which the cursor was trustworthy
but the buttons were not. As suggested in EWS, the cursor,
when hovering over a copy or paste button, displayed text in-
dicating the button’s function. Most users (61%) reported not
noticing the cursor text. Of those that noticed it, only 44% re-
ported noticing attack situations (inconsistencies between the
cursor and the button texts). During the trials, users by and
large followed the button text, not the cursor, succumbing to
87% of attack trials. Further, introducing the cursor text in
the task instructions for about half of the participants did not
significantly affect either noticing the cursor (Pearson’s chi-
squared test: χ2(N = 130) = 2.119, p = 0.1455) or success
rate (Mixed Model analysis: F(1,1) = 0.0063, p = 0.9370).
Thus, it is imperative that the entire UI stack of access-
granting features be authentic, as is the case with our ACGs.
Limited Customization. To evaluate the sufficiency of lim-
ited customization described in Section 4.1.1, we analyzed
the 100 Android applications previously described. We ex-
amined the degree of customization of UI elements related to
accesses to the camera, location (GPS and network-based),
the microphone, the phone’s calling capability, SMS (send-
ing, receiving, and reading), the contact list, and the calendar.

The results of our evaluation are summarized in Table 4-B.
In general, we find minimal customization in UI elements re-
lated to resource access (e.g., a camera button). In particular,

13



for each UI element we identified a commonly used canoni-
cal form, and found that 73% of the UI elements we examined
differed only in color or size from this canonical form (using
similar icons and text). As an example, Figure 7 shows the
degree of customization in buttons to access the microphone.
We note that applications developers may be willing to re-
place more than 73% of these UI elements with standardized
ACGs; further study is needed to evaluate the willingness of
developers to use ACGs in their applications. Nevertheless,
we find that the majority of today’s UI elements already re-
quire only limited customization.

We observed only three types of UI elements associated
with multiple resource accesses: microphone with camera
in two video chatting applications (e.g., Skype), microphone
with location in two applications that identify songs and tag
them with the current location (e.g., Shazam), and camera
with location in one camera application. These findings sup-
port our decision to limit composition (Section 4.1.1).

6.8 Performance

We evaluate the performance of user-driven access control,
focusing our investigation on drag-and-drop for two reasons:
(1) its dataflow is similar or identical to the dataflow of all
one-time access-control abstractions and thus its performance
will be indicative, and (2) the usability of drag-and-drop (a
continuous, synchronous action) is performance-sensitive.

In particular, we evaluate the performance of intermediate
drag-and-drop events, which are fired on every mouse move
while the user drags an object. We compared our performance
to that of Windows/COM for the same events. We ran all
measurements on a computer with a dual-proc 3GHz Xeon
CPU with 12GB RAM, running 64-bit Windows 7.

In both systems, we measured the time from the registra-
tion of the initial mouse event by the kernel to the triggering
of the relevant application event handler. The difference was
negligible. In Windows, this process took 0.45 ms, averaged
over 100 samples (standard deviation 0.11 ms); in our system,
it took 0.47 ms on average (standard deviation 0.22 ms).

7 Related Work
Philosophically, user-driven access control is consistent with
Yee’s proposal to align usability and security in the context
of capability systems [39]. We presented state-of-the-art per-
mission systems on modern client platforms, such as iOS, An-
droid, and browsers, in Section 2. We address other related
systems here.

Browser restrictions have led web developers to use
browser plugins and extensions to access user-owned re-
sources. For instance, developers have created copy-and-
paste buttons by overlaying transparent Flash elements and
clickjacking [25]. Flash recently introduced a user-initiated
action requirement [1], restricting paste to the Ctrl-V short-
cut and requiring a click or keystroke for other permissions.
This requirement does not accurately capture user intent, as

users often perform actions unrelated to the access granted.
CapDesk [22] and Polaris [33] are experimental capability-

based desktop systems that apply a philosophy similar to that
of user-driven access control, but their focus is restricted to
file access. Both give applications minimal privileges, but al-
low users to grant applications permission to access individ-
ual files via a powerbox (similar to our content picking ACG).
Recent systems like Mac OS X Lion [3] and Windows 8 [20]
have adopted this approach for file picking. We generalize
user-driven access control for all user-owned resources.

Shirley and Evans [32] propose a system (prototyped only
for file resources) that tries to infer a user’s access control in-
tent from the history of user behavior. BLADE [18] tries to
infer the authenticity of browser-based file downloads using
similar techniques. Our technique requires no such inference
and robustly captures user intent at the moment a user inter-
acts with an ACG.

The EROS Trusted Window System (EWS) [31], the
Qubes OS [29], and Tahoma [8] advocate user-authentic ges-
tures for copy-and-paste. NitPicker [14] and EWS support
drag-and-drop. We generalize these notions into generic sup-
port for permission-granting input sequences. None of these
systems consider the notion of ACGs, though EWS provides
a special kind of transparent window that allows applications
to include customized copy-and-paste buttons. We found in
our evaluation that the transparent window solution enables
attacks that our ACG design eliminates. None of these sys-
tems consider access to other user-owned resources.

Felt et al. uncovered permission re-delegation vulnerabil-
ities [13] in Android by which applications unwittingly del-
egate permissions to unprivileged applications via IPC. Such
threats may still exist on ACG-capable systems, but can be
prevented by the IPC inspection mechanism proposed in [13].

Multi-level security systems like SELinux [26] classify in-
formation and users into sensitivity levels to support manda-
tory access control security policies. Information flow control
techniques (e.g., [40]) can provide OS-level enforcement of
information flow policies; user-driven access control can cap-
ture such policies from user actions.

8 Conclusion
In this paper, we advocate the use of user-driven access con-
trol for granting permissions in modern client platforms. Un-
like existing models (such as manifests and system prompts)
where the system has no insight into the user’s behavior
in an application, we allow an application to build priv-
ileged, permission-granting user actions into its own con-
text. This enables an in-context, non-disruptive, and least-
privileged permission system. We introduce access control
gadgets as privileged, permission-granting UIs exposed by
user-owned resources. Together with permission-granting in-
put sequences (such as drag-and-drop), they form the com-
plete set of primitives to enable user-driven access control in
modern operating systems.

14



Our evaluation shows that illegitimate access to user-
owned resources is a real problem today and will likely be-
come a dominant source of future vulnerabilities. User-driven
access control can potentially eliminate most such vulnera-
bilities (82% for Chrome, 96% for Firefox). Our user studies
indicate that users expect least-privilege access to their re-
sources, which the existing models fail to deliver, and which
user-driven access control can offer. By studying access se-
mantics of top Android applications, we find that user-driven
access control offers least-privilege access to user-owned re-
sources for 95% of the applications, significantly reducing
privacy risks. Our implementation experience suggests that it
is easy for system developers to add support for new resource
types and for application developers to incorporate ACGs into
their applications. With these results, we advocate that client
platforms adopt user-driven access control.

9 Acknowledgements
We thank Stuart Schechter, Steve Gribble, Galen Hunt, Dan
Simon, John Sheehan, and the UW CSE systems seminar for
valuable feedback on this work, and Greg Akselrod, Roxana
Geambasu, and Dan Halperin for feedback on earlier drafts.
We thank Michael Berg and Microsoft User Research, An-
drew Begel, James Fogarty, and Batya Friedman for their help
with the user study, and the study participants for their partic-
ipation. This work was done while the first two authors were
visiting Microsoft Research.

References
[1] ADOBE. User-initiated action requirements in Flash Player

10. http://www.adobe.com/devnet/flashplayer/articles/
fplayer10_uia_requirements.html, 2008.

[2] ANDROID OS. http://www.android.com/.
[3] APPLE. App sandbox and the Mac app store. https://developer.

apple.com/videos/wwdc/2011/ Nov. 2011.
[4] APPLE. iOS4, 2011. http://www.apple.com/iphone/.
[5] BALLANO, M. Android Threats Getting Steamy. Symantec Official

Blog, Febuary 2011. http://www.symantec.com/connect/blogs/
android-threats-getting-steamy.

[6] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN, A. Pro-
tecting Browsers from Extension Vulnerabilities. In Network and Dis-
tributed System Security Symposium (NDSS) (Feb. 2010).

[7] CHROMIUM. Security Issues. https://code.google.com/p/
chromium/issues/list?q=label:Security, Feb. 2011.

[8] COX, R. S., GRIBBLE, S. D., LEVY, H. M., AND HANSEN, J. G. A
Safety-Oriented Platform for Web Applications. In IEEE Symposium
on Security and Privacy (2006).

[9] DOWDELL, JOHN. Clipboard pollution. http://blogs.adobe.com/
jd/2008/08/clipboard_pollution.html, 2008.

[10] FACEBOOK. Apps on Facebook.com, 2011. http://developers.
facebook.com/docs/guides/.

[11] FELT, A. P., GREENWOOD, K., AND WAGNER, D. The effectiveness
of application permissions. In USENIX WebApps (June 2011).

[12] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E., AND
WAGNER, D. Android permissions: User attention, comprehension,
and behavior. Tech. Rep. UCB/EECS-2012-26, UC Berkeley, 2012.

[13] FELT, A. P., .WANG, H. J., MOSHCHUK, A., HANNA, S., AND
CHIN, E. Permission Re-Delegation: Attacks and Defenses. In
USENIX Security Symposium (2011).

[14] FESKE, N., AND HELMUTH, C. A Nitpicker’s guide to a minimal-
complexity secure GUI. In ACSAC (2005).

[15] GRIER, C., TANG, S., AND KING, S. T. Secure Web Browsing with
the OP Web Browser. In IEEE Symp. on Security & Privacy (2008).

[16] HOWELL, J., AND SCHECHTER, S. What You See Is What They Get:
Protecting Users from Unwanted Use of Microphones, Camera, and
Other Sensors. In Web 2.0 Security and Privacy Workshop (2010).

[17] KARGER, P. A., ZURKO, M. E., BONIN, D. W., MASON, A. H.,
AND KAHN, C. E. A retrospective on the VAX VMM security kernel.
IEEE Transactions on Software Engineering 17, 11 (Nov. 1991).

[18] LU, L., YEGNESWARAN, V., PORRAS, P., AND LEE, W. Blade: an
attack-agnostic approach for preventing drive-by malware infections.
In ACM CCS (2010).

[19] MACKENZIE, I. S. Fitts’ Law as a Research and Design Tool in
Human-Computer Interaction. Human-Computer Interaction (HCI)
7(1) (1992), 91–139.

[20] MICROSOFT. Accessing files with file pickers. http://msdn.
microsoft.com/en-us/library/windows/apps/hh465174.aspx.

[21] MICROSOFT. What is User Account Control?, 2011.
http://windows.microsoft.com/en-US/windows-vista/What-
is-User-Account-Control.

[22] MILLER, M. S. Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, MD, USA, 2006.

[23] MOTIEE, S., HAWKEY, K., AND BEZNOSOV, K. Do Windows Users
Follow the Principle of Least Privilege?: Investigating User Account
Control Practices. In Symposium on Usable Privacy & Security (2010).

[24] MOZILLA FOUNDATION. Known Vulnerabilities in Mozilla Prod-
ucts, February 2011. http://www.mozilla.org/security/known-
vulnerabilities/.

[25] NOVAK, B. Accessing the System Clipboard with JavaScript: A
Holy Grail? http://brooknovak.wordpress.com/2009/07/28/
accessing-the-system-clipboard-with-javascript/.

[26] NSA CENTRAL SECURITY SERVICE. Security-Enhanced Linux.
http://www.nsa.gov/research/selinux/, Jan. 2009.

[27] PETRONI, JR., N. L., AND HICKS, M. Automated detection of per-
sistent kernel control-flow attacks. In ACM CCS (2007).

[28] RUDERMAN, J. The Same Origin Policy. http://www.mozilla.
org/projects/security/components/same-origin.html, 2011.

[29] RUTKOWSKA, J., AND WOJTCZUK, R. Qubes OS. Invisible Things
Lab. http://qubes-os.org.

[30] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for commodity
OSes. In ACM SOSP (2007).

[31] SHAPIRO, J. S., VANDERBURGH, J., NORTHUP, E., AND CHIZMA-
DIA, D. Design of the EROS Trusted Window System. In USENIX
Security Symposium (2004).

[32] SHIRLEY, J., AND EVANS, D. The User is Not the Enemy: Fight-
ing Malware by Tracking User Intentions. In New Security Paradigms
Workshop (2008).

[33] STIEGLER, M., KARP, A. H., YEE, K.-P., CLOSE, T., AND MILLER,
M. S. Polaris: Virus-Safe Computing for Windows XP. Communica-
tions of the ACM 49 (Sept. 2006), 83–88.

[34] TANG, S., MAI, H., AND KING, S. T. Trust and Protection in the
Illinois Browser Operating System. In USENIX OSDI (2010).

[35] W3C. Device APIs and Policy Working Group, 2011. http://www.
w3.org/2009/dap/.

[36] WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T., CHOUD-
HURY, P., AND VENTER, H. The Multi-Principal OS Construction of
the Gazelle Web Browser. In USENIX Security Symposium (2009).

[37] WANG, H. J., MOSHCHUK, A., AND BUSH, A. Convergence of Desk-
top and Web Applications on a Multi-Service OS. In USENIX Hot
Topics in Security (2009).

[38] YEE, K.-P. User interaction design for secure systems. In 4th Confer-
ence on Information and Communications Security (2002).

[39] YEE, K.-P. Aligning Security and Usability. IEEE Security and Pri-
vacy 2(5) (Sept. 2004), 48–55.

[40] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making information flow explicit in HiStar. In USENIX
OSDI (2006).

15


