
1

1

Some Anti-Worm Efforts 
at Microsoft

Helen J. Wang
System and Networking Research Group

Microsoft Research
Oct 29, 2004

2

Acknowledgements

• Matt Braverman, Opher Dubrovsky, John 
Dunagan, Louis Lafreniere, Steve Lipner, 
Jon Pincus, Pat Stemen, Yi-Min Wang



2

3

Outline

• Product side:
– Software Development Life cycle (SDL)
– Compile-time solutions: 

• /GS compiler option
• Static checking

– Windows XP SP2

• Research side:
– Shielding before patching (Shield, research)
– System management research (Strider)

4

New MS Software Development Life cycle

• Training
• Requirement

– Security at outset; security advisor, security milestone, exit criteria
• Design

– Identify trusted base, minimize/document attack surface, secure default 
setting

• Development
– Static checking, code review

• Verification
– Beta, regression testing, code review, penetration testing, auto tool 

check, 
• Release:

– Final security review: 2-6 months before; go back to previous phases if 
necessary; additional (external) penetration testing

• Response:
– Microsoft Security Response Center
– Sustain Engineering Teams
– Patch Management



3

5

Outline

• Product side:
– Software Development Life cycle (SDL)
– Compile-time solutions: 

• /GS compiler option
• Static checking

– Windows XP SP2

• Research side:
– Shielding before patching (Shield, research)
– System management research (Strider)

6

/GS Compiler Option

• Goal: defeat return address hijacking 
• /GS

– insert a cookie between the locally declared buffer 
and the return address

– test cookie for corruption before using return address
– If test fails, terminate the process

• Various challenges
– Exception handler function pointer hijacking
– User installable function pointer hijacking
– Pointer subterfuge

• hijacking local pointers or function parameters
• Global cookie hijacking



4

7

namename

GarbageGarbage

Previous function’sPrevious function’s
stack framestack frame

cbcb

Return addressReturn address

CookieCookie

&&bufbuf

pp

ii

GarbageGarbage

Attack CodeAttack Code

p = &Return p = &Return AddrAddr

i = &Attack Codei = &Attack Code

/GS Compiler Option:
Trampoline (Pointer subterfuge )

void vulnerable(
char* buf, int cb)

{
char name[8];
int *p = &G;

int i = value();

memcpy(name, buf, cb);
*p = i;

}

2 stages attack

8

/GS Compiler Option, Cont.

• Mitigations
– Reorder local variables to avoid local pointer hijacking
– Shadow parameters as local variables to avoid 

function parameter hijacking
– Safe Exception Handling (SEH):

• OS detects invalid exception handlers
• CRT detects corrupted SEH info table

– Cookie protection:
• Hiding the local cookie to mitigate global cookie hijacking: 

XOR (ESP, cookie)
• Leading 0’s for cookie to prevent “strcpy” buffer overruns

• Arms race



5

9

Static Checking

• MSR PPRC MS CSE
– Static checking for software defects such as 

buffer overflows, un-initialized data, resource 
leakage, etc. 

– Tools: espX
• Use code annotation to enable effective local data 

flow and control flow analysis

10

espX Usage



6

11

Outline

• Product side:
– Software Development Life cycle (SDL)
– Compile-time solutions: 

• /GS compiler option
• Static checking

– Windows XP SP2

• Research side:
– Shielding before patching (Shield, research)
– System management research (Strider)

12

Windows XP SP2: 
Securing the Network

• Windows firewall (ICF) 
– On by default
– Stateful: automatically matching inbound traffic with outgoing requests
– Boot time security
– Limit the number of half open TCP connections to 10
– Application affected: those listen for unsolicited traffic (e.g., file/printer 

sharing, uPnP, remote desktop, remote admin, ICMP options)
• RPC/DCOM

– Reduce attack surface
– Make it easier to restrict RPC interfaces to local machine 
– Block unauthenticated calls to DCOM and RPC services

• Attachments:
– Unsafe attachments not trusted by default 
– Block/Prompt/Allow determined by combination of file type & zone

• Dangerous file type + Restricted Zone = Block
• Dangerous file type + Internet Zone = Prompt



7

13

Windows XP SP2: 
Memory Protection

• /GS:
– Most critical components that take network or untrusted input 

have been recompiled

• NX:
– Prevents execution of injected code
– Leverages processor technology

• Marks memory regions as non-executable
• Processor raises exception when injected code is executed

– Supported on 64-bit extensions processors
• SP2 runs in 32-bit compatibility mode with NX support

– On by default only for system components
• User applications can be opted in

– Some app compatibility issues

14

Outline

• Product side:
– Software Development Life cycle (SDL)
– Compile-time solutions: 

• /GS compiler option
• Static checking

– Windows XP SP2

• Research side:
– Shielding before patching (Shield, research)
– System management research (Strider)



8

15

Software patching not an effective 
first line worm defense

• Sasser, MSBlast, CodeRed, Slammer, 
Nimda, Slapper all exploited known
vulnerabilities whose patches were 
released months or weeks before

• 90+% of worm attacks exploit known 
vulnerabilities [Arbaugh2002]

• People don’t patch immediately

16

Why don’t people patch?

• Disruption
– Service or machine reboot

• Unreliability 
– Software patches inherently hard to test

• Irreversibility 
– Cannot always undo a patch

• Unawareness
– Automatic patch installation not possible



9

17

Firewall also not an effective first 
line worm defense

• Traditional firewalls
– Course-grained

• High false positive rate

– Typically in the network
• One-size-fits-all solution, lack application-awareness, miss 

end-to-end encrypted traffic

• Exploit-driven firewalls
– Filter according to exploit (attack) signatures

• Attack code obfuscation, e.g., polymorphism, metamorphism, 
can evade the firewall

– Worms spread fast (in minutes or seconds!)
• Real-time signature generation and distribution difficult

18

Shields: End-host Vulnerability-
Driven Network Filters

• Goal: Protect the time window between vulnerability 
disclosure and patch application.

• Approach: Characterize the vulnerability instead of its 
exploits and use the vulnerability signature for end-host 
firewalling

• Shields combine the best features of
– Patches: vulnerability-specific, code level, executable
– Firewall: exploit-specific, network level, data-driven 

• Advantages of Shield:
– Protection as good as patches (resilient to attack variations), 

unlike exploit-driven firewalls
– Easier to test and deploy, more reliable than patches



10

19

Shield 
Policies

Incoming or 
Outgoing

Network Traffic

Shielded Traffic 
to Processes or
Remote Hosts

End-Host Shield

New Shield Policy

Overview of Shield Usage

• Shield intercepts vulnerable application traffic 
above the transport layer.

• Policy distribution very much like anti-virus 
signature model – automatic, non-disruptive, 
reversible

20

Vulnerability Modeling

S0

V4 S5

S2

Application 
Functionality in S2

Protocol State Machine

S4V4

Vulnerability 
State 

Machine

Shield Policy (Vulnerability Signature):
Vulnerability state machine + how to recognize and react 
to exploits in the vulnerable state

Exploit 
Event

S0

S3

S2S1

S5

Message



11

21

Shield Implementation 
and Evaluation

• Prototype implemented as Windows Layered 
Service Provider (LSP)
– Uses Generic Protocol Analyzer 
– Working shields for vulnerabilities behind Blaster, 

Slammer, and CodeRed
– Performance and scalability results promising: 

• Negligible overhead for end user machines
• 14-30% throughput overhead for an artificial scenario 

stressing Shield

• MSRC 2003 Bulletin study
– All 12 worm-able vulnerabilities are easily shield-able
– Some of the other 37 may also be shield-able

22

Ongoing Work

• Generic protocol analyzer (GPA):
– Implements common elements of application 

protocol functions
• State machine operations, event dispatching, …

– Policy language specifies variations of individual 
protocols
• State machine transitions, payload format, …

– Key advantage: Minimize efforts for releasing new 
shields

• ShieldPot:
– Distributed shield-equipped honeypots
– Detect (stealthy) unknown attacks against known 

vulnerabilities



12

23

Outline

• Product side:
– Software Development Life cycle (SDL)
– Compile-time solutions: 

• /GS compiler option
• Static checking

– Windows XP SP2

• Research side:
– Shielding before patching (Shield, research)
– System management (Strider, research)

24

Strider: Patch Management

• The challenge of software patches: testing
• Patch Impact Analysis 

– Use file and registry tracing to quickly narrow 
down the set of apps that need to be tested



13

25

Strider: 
Security Access Check Tracer

• Problem: user-level app runs with Admin 
privilege – compromise of user-level app is 
a system compromise

• Security Access Check Tracing
– A developer tool for identifying every access 

that would fail for a non-admin, along with 
helpful debugging information

• Kernel-mode tracing around security subsystem

– Most admin dependencies are easy to 
remove once pinpointed

26

Questions?


