Some Anti-Worm Efforts
at Microsoft

Helen J. Wang
System and Networking Research Group
Microsoft Research
Oct 29, 2004

Acknowledgements

« Matt Braverman, Opher Dubrovsky, John
Dunagan, Louis Lafreniere, Steve Lipner,
Jon Pincus, Pat Stemen, Yi-Min Wang




Qutline

* Product side:
— Software Development Life cycle (SDL)

— Compile-time solutions:
* /GS compiler option
« Static checking

— Windows XP SP2

* Research side:
— Shielding before patching (Shield, research)
— System management research (Strider)

New MS Software Development Life cycle

e Training
* Requirement
— Security at outset; security advisor, security milestone, exit criteria
* Design
— Identify trusted base, minimize/document attack surface, secure default
setting
* Development
— Static checking, code review
¢ Verification

— Beta, regression testing, code review, penetration testing, auto tool
check,

¢ Release:

— Final security review: 2-6 months before; go back to previous phases if
necessary; additional (external) penetration testing

* Response:
— Microsoft Security Response Center
— Sustain Engineering Teams
— Patch Management




Qutline

* Product side:
— Software Development Life cycle (SDL)

— Compile-time solutions:
» /GS compiler option
« Static checking

— Windows XP SP2

* Research side:
— Shielding before patching (Shield, research)
— System management research (Strider)

/IGS Compiler Option

» Goal: defeat return address hijacking

« /GS

— insert a cookie between the locally declared buffer
and the return address

— test cookie for corruption before using return address
— If test fails, terminate the process

» Various challenges
— Exception handler function pointer hijacking
— User installable function pointer hijacking

— Pointer subterfuge
* hijacking local pointers or function parameters
» Global cookie hijacking




/IGS Compiler Option:
Trampoline (Pointer subterfuge )

2 stages attack

void vulnerable (
char* buf, int cb)
{

Attack Code

ChanLome ]
int *p = &G;
int i = value() ;

memcpy (name, buf, cb);
*p:i;

/IGS Compiler Option, Cont.

« Mitigations
— Reorder local variables to avoid local pointer hijacking

— Shadow parameters as local variables to avoid
function parameter hijacking
— Safe Exception Handling (SEH):
» OS detects invalid exception handlers
e CRT detects corrupted SEH info table
— Cookie protection:

* Hiding the local cookie to mitigate global cookie hijacking:
XOR (ESP, cookie)

 Leading O’s for cookie to prevent “strcpy” buffer overruns
« Arms race




Static Checking

« MSR PPRC - MS CSE

— Static checking for software defects such as
buffer overflows, un-initialized data, resource
leakage, etc.

— Tools: espX

¢ Use code annotation to enable effective local data
flow and control flow analysis

espX Usage

(1) espX infers annotations, i.e., contracts between functions
(2) espX checks each function for buffer overruns
(3) Developers review reported defects

/\;

P,

Code Base

Annotations,

0BugFimas '5\ Rceg.d:
,\ l iew I




Qutline

* Product side:
— Software Development Life cycle (SDL)

— Compile-time solutions:
* /GS compiler option
« Static checking

— Windows XP SP2

* Research side:
— Shielding before patching (Shield, research)
— System management research (Strider)

11

Windows XP SP2:
Securing the Network

e Windows firewall (ICF)
— On by default
— Stateful: automatically matching inbound traffic with outgoing requests
— Boot time security
— Limit the number of half open TCP connections to 10

— Application affected: those listen for unsolicited traffic (e.qg., file/printer
sharing, uPnP, remote desktop, remote admin, ICMP options)

« RPC/DCOM
— Reduce attack surface
— Make it easier to restrict RPC interfaces to local machine
— Block unauthenticated calls to DCOM and RPC services
e Attachments:
— Unsafe attachments not trusted by default
— Block/Prompt/Allow determined by combination of file type & zone

» Dangerous file type + Restricted Zone = Block
» Dangerous file type + Internet Zone = Prompt

12




Windows XP SP2:
Memory Protection
* /GS:

— Most critical components that take network or untrusted input
have been recompiled
* NX:
— Prevents execution of injected code
Leverages processor technology
» Marks memory regions as non-executable
» Processor raises exception when injected code is executed
Supported on 64-bit extensions processors
e SP2 runs in 32-bit compatibility mode with NX support
On by default only for system components
» User applications can be opted in
Some app compatibility issues

13

Qutline

* Product side:
— Software Development Life cycle (SDL)

— Compile-time solutions:
* /GS compiler option
* Static checking

— Windows XP SP2

* Research side:
— Shielding before patching (Shield, research)
— System management research (Strider)

14




Software patching an effective
first line worm defense

» Sasser, MSBlast, CodeRed, Slammer,
Nimda, Slapper all exploited
vulnerabilities whose patches were
released before

90+% of worm attacks exploit known
vulnerabilities [Arbaugh2002]

People don't patch immediately

15

Why don’t people patch?

Disruption

— Service or machine reboot

Unreliability

— Software patches inherently hard to test
Irreversibility

— Cannot always undo a patch
Unawareness

— Automatic patch installation not possible

16




Firewall also an effective first

line worm defense

« Traditional firewalls
— Course-grained
» High false positive rate
— Typically in the network
* One-size-fits-all solution, lack application-awareness, miss
end-to-end encrypted traffic

» Exploit-driven firewalls

— Filter according to exploit (attack) signatures
 Attack code obfuscation, e.g., polymorphism, metamorphism,
can evade the firewall
— Worms spread fast (in minutes or seconds!)

» Real-time signature generation and distribution difficult
17

Shields: End-host Vulnerability-
Driven Network Filters

* Goal: Protect the time window between
and

 Approach: Characterize the vulnerability instead of its
exploits and use the vulnerability signature for end-host
firewalling

* Shields combine the best features of
— Patches: , code level, executable
— Firewall: exploit-specific, ,

» Advantages of Shield:

— Protection as good as patches (resilient to attack variations),
unlike exploit-driven firewalls

— Easier to test and deploy, more reliable than patches 18




Overview of Shield Usage

New Shield Policy

Incoming or Shielded Traffic

Outgoing : to Processes or

Network Traffic Sh'_el_d Remote Hosts
Policies

End-Host Shield

» Shield intercepts vulnerable application traffic
above the transport layer.

» Policy distribution very much like anti-virus
signature model — automatic, non-disruptive,
reversible

19

Vulnerability Modeling

Vulnerability
State y
Machine 7

Exploitx
Event

Application
Functionality in S2

Protocol State Machine

Vulnerability state machine + how to recognize and react
to exploits in the vulnerable state

20

10



Shield Implementation
and Evaluation

» Prototype implemented as Windows Layered
Service Provider (LSP)
— Uses Generic Protocol Analyzer

— Working shields for vulnerabilities behind Blaster,
Slammer, and CodeRed

— Performance and scalability results promising:
* Negligible overhead for end user machines

» 14-30% throughput overhead for an artificial scenario
stressing Shield

« MSRC 2003 Bulletin study
— All 12 worm-able vulnerabilities are easily shield-able
— Some of the other 37 may also be shield-able

21

Ongoing Work

» Generic protocol analyzer (GPA):

— Implements common elements of application
protocol functions
e State machine operations, event dispatching, ...

— Policy language specifies variations of individual
protocols
e State machine transitions, payload format, ...

— Key advantage: Minimize efforts for releasing new
shields

e ShieldPot:

— Distributed shield-equipped honeypots

— Detect (stealthy) unknown attacks against known
vulnerabilities 22

11



Qutline

* Product side:
— Software Development Life cycle (SDL)

— Compile-time solutions:
* /GS compiler option
« Static checking

— Windows XP SP2

* Research side:
— Shielding before patching (Shield, research)
— System management (Strider, research)

23

Strider: Patch Management

» The challenge of software patches: testing

» Patch Impact Analysis

— Use file and registry tracing to quickly narrow
down the set of apps that need to be tested

24

12



Strider:
Security Access Check Tracer

» Problem: user-level app runs with Admin
privilege — compromise of user-level app is
a system compromise

» Security Access Check Tracing

— A developer tool for identifying every access
that would fail for a non-admin, along with
helpful debugging information

» Kernel-mode tracing around security subsystem

— Most admin dependencies are easy to

remove once pinpointed

25

Questions?

26

13



